

>BUSINESS MADE **SIMPLE**

Relative Permittivity Variation Surrounding PCB Via Hole Structures

SPI2008 Avignon France

May 12-15, 2008

Lambert Simonovich

lambert@nortel.com

Introduction

- Present IC technology advancements are allowing data rates beyond 6 Gb/s
- PCB through hole via parasitics becoming more of a factor affecting BER performance
- Accurate via modeling and topology simulation are a must
- All models and methodologies require defining relative permittivity (ε_r) or dielectric constant (*Dk*) of material surrounding the via hole structure

PCB Fabrication Overview

➢Conventional PCB laminates are fabricated with a weave of E-glass fiber yarns (*Dk* 6.6 @ 1MHz) and resin (*Dk* 3.2 @ 1MHz) [1]

- Effective Dk is a function of glass to resin ratio of laminates used in the PCB stackup
- ➢ For FR-4 PCBs an effective Dk of 4.3 is often used for trace etch impedance calculations

Fiberglass Weave vs Resin Content

Fiberglass Weave

Fiberglass weaves vs. resin content illustration. Smaller glass diameter and thread count results in higher resin content, while larger glass diameter and thread count results in lower resin content.

N4000-6 [™] Dielectric Properties Table [1], [2]

Style	Glass / Laminate Thickness Ratio (mils)	Resin Content (%)	Yarn Count (threads/inch)	Yarn Pitch (mils)
106	1.4/2.0	69.0	56x56	17.9x17.9
1080	2.3/3.0	62.0	60x40	16.7x21.3
2113	2.9/4.0	54.5	60x56	16.7x17.9
2116	3.8/4.0	43.0	60x58	16.7x17.2
7628	6.8/8.0	44.4	44x32	22.7x31.3

SPI2008 Relative Permittivity Variation Surrounding PCB Via Hole Structures

Laminate Weave Effect

Vias

E-field

Higher glass to resin ratio between charges => Higher effective dielectric constant

Lower glass to resin ratio between charges => Lower effective dielectric constant

VS

Laminate Weave Effect of Via Hole Structure

SPI2008 Relative Permittivity Variation Surrounding PCB Via Hole Structures

Case Study Objective

To study the effect of relative permittivity surrounding a PCB via hole structure

Validate transmission line via model correlation to measured results

Test Setup

Test Coupon Topology

Data and Results

- Resonant frequency nulls due to the via stub length occur at odd harmonics of the ¼ wave frequency null
- Effective relative permittivity (a.k.a. dielectric constant Dk) can be calculated by [5];

$$Dk = \left[\frac{c}{4*Stub_length*f}\right]^2$$

= 6.46

Where: c = Speed of light (1.18E10 inches/sec); Stub_Length (0.270) inches; f = ¼ wave frequency (13.00GHz/3)

Data and Results

Stripline Layer	¹ /4 Wave Frequency (GHz)	3 rd Harmonic Frequency (GHz)	Via/Stub Lengths (Mils)	Calculated Dk
02	4.3	13.0	14/269.9	6.46
10	6.3	18.9	105.7/178.1	6.90
20	18.4	N/A	219.6/64.3	6.20

Differential Pair Via Model

- Modeled as differential pair transmission lines
- Analogous to a twin-round-wire wire structure

$$Zdiff = \frac{120\Omega}{\sqrt{Dk}} \ln\left(\frac{s}{2r} + \sqrt{\left(\frac{s}{2r}\right)^2 - 1}\right)$$

Where: Zdiff = Differential impedance; Dk = Dielectric constant; s = center-to-center space of vias; r = radius of drill [6]

> Odd mode via impedance (Zv)

$$Zv = \frac{Zdiff}{2}$$

Via Impedance Calculation

ADS Simulation Correlation Topology

SPI2008 Relative Permittivity Variation Surrounding PCB Via Hole Structures

ADS Simulation Correlation Results

SPI2008 Relative Permittivity Variation Surrounding PCB Via Hole Structures

Conclusions

Due to the fiberglass weave effect surrounding differential pair vias, the relative permittivity is higher than the dielectric surrounding wiring etch within the same PCB stackup

Using the correct value of dielectric constant has shown better accuracy for via modeling during topology simulations

References

- 1. Scott Mc Morrow, Chris Heard, "The Impact of PCB Laminate Weave on the Electrical Performance of Differential Signaling at Multi-Gigabit Data Rates", Design Con 2005.
- 2. Park Electrochemical Corp. , http://www.parkelectro.com
- 3. Gustavo Blando, Jason R. Miller, Istvan Novak, "Losses Induced by Asymmetry in Differential Transmission Lines", DesignCon 2007.
- 4. Howard Johnson, Martin Graham, "High Speed Digital Design, a Handbook of Black Magic".
- 5. Howard Johnson, Martin Graham, "High Speed Signal Propagation, Advanced Black Magic".
- 6. Eric Bogatin, "Signal Integrity Simplified"
- 7. Stephen C. Thierauf , "High-Speed Circuit Board Signal Integrity"
- 8. Lee Ritchey, ""Right the First Time, A Practical Handbook on High Speed PCB and System Design, Volume 1 & 2"
- Taras Kushta, Kaoru Narita, Tomoyuki Kaneko, Takanori Saeki, and Hirokazu Tohya, "Resonance Stub Effect in a Transition From a Through Via Hole to a Stripline in Multilayer PCBs", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 13, NO. 5, MAY 2003.
- 10. Miroslav Pajovic, Jinghan Yu, and Dragan Milojkovic, "Analysis of Via Capacitance in Arbitrary Multilayer PCBs", IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 49, NO. 3, AUGUST 2007.