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Abstract

In the GB/s regime, accurate modeling of insertion loss and phase delay is a precursor to
successful higispeed serial link designs. We propose a causal (physically meaningful) form of
the Hammerstad and Cannonkbdliray metal oughness frequency dependent complex
correction factor. Compared to the widely used,-cauasal form, it considerably increases the
inductive component of internal metal impedance. Transmission lines simulated with a causal
version demonstrate increasedpé delay, and characteristic impedance. By obtaining the
dielectric and roughness parameters, solely from manufacturers' data sheets, we validate the
model through a detailed case study to test the model's accuracy.
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Introduction

Metal loss is an increasingly important factor affecting design quality in aldpigad

applications. As operational frequencies went up, it became evident that formulas ignoring
roughness of the metal surface greatly underestimated losses. A numlq@oathps have been
proposed over the years 8] that introduced additional losses by applying frequeshelyendent
correction to the impedance of the smooth metal. Recent survey in this area can be fjund in [

As of today, a widely accepted approacimimdel an impedance of the rough metal is taking a
complex frequencglependent impedance of the smooth metal and applying to it a multiplier
K (w) that monotoically grows from 1 ta (=) >1. Virtually all publications on thisopic anda

vast majority of commercially aitable simulatorassume that this correcting multiplierais
realvalue function]l n t he | iterature, it is often called

Since the internal impedance of the smooth surface sided bythewell-k nown fAski n eff
formula, where real and imaginary parts of the impedance are equal, applying a real multiplier to

it obviously produces the complex value where the parts (resistive and inductive components of
impedance) are also edquBor example,2-4] give us the following relations:

R,.(W) = K(W)\/_WRS, L..(w) =R, .(W)/w, making R .(w) andut,,(») definitely equal. Similar

eguations/statements can be found in many other publications, includjogtextbooks.

Is this a physically valid model of metal impedance? Can we apply a freqdepepdent real
multiplier to a causal dependenwdich thesmooth impedance formula definitely vgithout
violating causality? There are only few sources kntwas thahave raisedhese questions.

First, this issue was addressedShwhere the authors mention that inductive and resistive
portion of the metal 6s internal i mpedance are
by Hilbert transform t@nforce model causality. Indeed, tloeighness correction factk( )

was defined and derived as a ratio of the active power dissipated on a rough metal to that
dissipated on a perfectly smooth metal. From here, it follows that it despritygortionality

between the resistive portions of the impedance only. As to wording, it would make sense to call
Kwa Al oss correction factoro because we have

component should be increasedtie same proportion. Another publicatidi fctuallyapplied
this idea to find a causal version of Hurayo©6s

Il tds remar kabl e t ha tapdrfacegsoend forebgildirlg physicall e s pi t e |
meaningfulcausal models of metadughness, went majorly unnoticddencethe commonly

used practichasr 6 t  d sireentlger. Perhaps, this can be explained by the factitdid|

not provide practical examples of causal versions of known models, v@hileight appear too

academicta he readers, and possibly didnét contain
to immediately start using the causal model.



A far-reaching goal of this paper is to give an additiemgletusto this development and make
causal roughness modglart of he mainstreanparadignwhensimulating metal losses. As we
remember, this happened a few years ago théhintroduction of causalielectric loss modeling
[7, 8]. Now is the time for the metal.

In addition we wouldlike to fill in some knowledge gapegarding this subject, such as:

1 General approach to derivation of causal models from given analytical exprgssioother
reasonably complete descriptiaf)the metal loss correction factor

1 Basic relationships existing between loss correction faictductance correction factor,
complex correction factor, real and imaginary parts of internal impedance and inductance of
the rough metal

1 Sideby-side comparison of those dependences between causal andusah versions of
Hammerstad and Cannonbiluray models

1 Derivation of causal roughness model from loss correction factor specified as tabulated
dependence

We also show that:

1 As necessitated by causality requiremeimmguctive portion of the internal metal impedance
of the rough metal is not equalt appears much larger than the corresponding resistive
portion of it

1 We analyze the effect of usimgausal model of metal roughnesstbacharacteristics of
transmission lines. Under other conditions being eqala u s a | mod el mak es
and characteristic impedance larger than with-cewnsal models. We provide expressions
which formally evaluate this difference

1 We compare measured characteristics of stripline to simulations whercassal and non
causal versions @ghe CannonbalHuray roughness modgl1]. The CannonbalHuray
modelis a simple model, based cabicclosepacking of equasphereswhich can be used
to determine the sphere radius and area parameters for therblughypess formularhe
canronball stack is an example of a cubic clpseking of equal spheres, thus the name for
the modelBy obtaining published conductor roughness parameteledy from
manuf act ur e the mode laas showsxbekert agsegement to measured results up
to 50 GHz.

This paper is organized as followSection | gives general relationships for the causal roughness
correction multiplier, and outlines the process of deriving a causal correction factor for a given
analytical expression for the loss correctcoefficient. In Section 1l we apply this approach to
CannonbalHurayand Hammerstaohodek. Section Il analyzes the results for Cannonball
Huray and Hammerstad modeln SectionV, we evaluate the effect of using causal models
when analyzing lossiyansmission ling In Section V we outline the process of finding a

complex causal model when the loss correction factor is gjyextable.In Section VI, we
describehe CannonbaHlHuray roughness model more detail Then, wevalidatethe model
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through a case studysing causal and nezausal versions of Cannonbéllray formula and
compare thento the measureesults

I.  General relationships

As shown in 2, 3, an internal impedance of the metal with smooth surface is related to the skin
depth, an #ective penetration of electromagnetic field into metal surface:

1
—_— 1
il (2)

wheref is frequencyHz), m3is permeabilityof free spacéH/m) ands is metal conductivity

(S/m). As follows from this formula, the thickness of the effective conducting layer decreases as
1/\/7 , thus causing an increase in metal impedance in inverse proportion. From here it follows
a welkknown formula for the complex impedance o# #mooth conductor:

Z.ooi) = (L+)VnR,,, whichwe will slightly modify and represent as a function of the
normalized frequency:

d(f) =

Z o ooriX) = (L+1)VXR, = /25R . (2)

HereRi s a fAskin resi st aabsorbsesome materia and geametricalf act or

parameters of the conductor, &wlix is a complex frequency. It is convenient to establish
proportionality between the normalized frequer@&nd the angular frequenmyindividually for
each type of metal roughness model, aedwill select it later. An impedance of the rough metal
surface, under other conditioheingequal, is larger and therefore can be expressed as

Zrough(ix) = Zsmootr(ix) + Z0 (IX) (3)

whereZ,(ix) is an additional impedance due to metal roughness. As statgdtiotdl and
additional impedance caused by metal roughness must be a causal functiorRes, fsand
ImZ,(s) mustbemutual Hilbert transforms. In [1] and many other sources, the loss

correction factor is defined as a ratio of the power dissipatadough metal to that dissipated
in a perfectly smooth metal. From this definition it follows that loss correction fdofgra real

function of frequency, is also the ratio of the resistive part of impedance of rough metal to the
resistive part of impedance of smooth metal:
K(X) = REZ,,(1X) | REZqy0fiX) =1+ REZ (1X) | REZppq00(iX) =1+ Ky (X) (4)

In all practical cases it is assumed thg0) =0, because metal roughness makes no addition to
impedance at low frequency.



Note that it would be improper to use the relatidg,(X) = K(X)Z,,0q{iX) OF

Z,(X) =k (X)Z00liX) , because we have no eviderthat roughness modifies inductive

(imaginary) part of impedance in the same proportion as it does for resistive (real) part. Instead,
we should assume that there exists similar relationship with complex (yet unknown) factor

Ko (ix):
ZO(iX) = K0 (iX)Zsmootf(iX) : (5)

How can we practically fin&,(ix) ? From @) and @), it follows that

ReZ4 (iX) = ko (X) REZq001fiX) = ks ()VXR, (6)

and we also know tha (ix) must be a causal function. For causal complex function, imaginary

partcan be restored from known real part (6), by using certain types of Kikoaigers(K-K)
relations. Once the missing imaginary parZ,(ix) is restored, the unknown complex correction

factor can be found as:
Ko (iX) = Z,(iX) ] Zg o0 iX) - (7

With known causal complex correction factor, an additional impedance due to metal roughness
becomes:

Zy(5) = Ko(9)V2sR.. (8)

From (8), we can express the factors at real and imaginary parts of the impedance of smooth
metal as:

Z,(S) = Z, (X) +iZy (X) = K, (iX)(A+i)VXR, =

[Kor (%) - Kot OOIVXR, +i[ Ky, (X) + Ky (IVXR.. 9)

As we see, real and imaginary parts of skin impedance are increased by different factors. The one
in the real part describésss correction factqrthe other is amductance correction factor
Also, comparing (4) and (9ve see that

[Kor (X) - K ()] =ko(X) - (10)

This result matche$]. An important conclusion from here is that for a given complex
correction factor that applies to complex impedance of the smooth metal, the loss correction
factor is a difference betweds real and imaginary parts, whereas an inductance correction
factor is a sum of real and imaginary parts of the same complex factor. As we see, metal
roughness modifies resistive and inductive parts of the srmoetdlin different proportion.



Below,we will also need an expression for an additional complex inductance caused by metal
roughness. It can be found as a ratio of the complex impedance (8) and complex frequency as

Ly(s) =Z,(s)/s= Ko(s)\/éRS. Real and imaginary parts of the complex impedamd
S

inductance are related Bg(ix) = L, (X) +iLy (X) = Zy (X)/ X - iZ,, (X)/ x. Therefore, imaginary
part of the inductance can be found as

L (¥) =~ Zoy ()] X =~ (Ko()VXR)/ X =~ "3(;) R. (1)

As we see, iis fully defined bythe loss correction factor.

Il.  Finding causal correction factor for
Cannonball -Huray and Hammerstad model s

Cannonball -Huray model

We will usetheabove equations to illustrate the process of deriving complex correction factor
for a single component of the Cannonidillray roughness model. As shown 8 L1, these
models define loss corrgan factor in a form of the sum
N
Ko )= A+ § — (12)

S GOIAD)
. 28

a
wherel(f) is a skin depth defined in)J, are radii of spherical shapes representing rough metal

andfactorsA, are constant and defined by geometry assumed by each model.

Let 6 s othsusimahcim (12), assumifg=1. By introducing a dimensionless

normalized frequency= (\/Ea\1 la(f ))2 = w nEa’, we represent this componentaasimple
function of a single argument

>0. (13)

(=~ =X
1442/ X +1/x  x+/2x+1’

Then, using definitionand ideasrom Section | we derive a complex factor as shown in

Considering all summands in (12), the final

Jix
+4fix

Appendix A. This factor becomé&s,(ix) = 1

result becomes:



Kpn(if ) = Ab+a A’\/\/: wherex, = 20fmgsa?. (14)

Hammerstad model

Hammersad loss correction factg?] is given by equatian

(f)= 1+Al arctanﬂ. AD/ d(f))?) (15)

hms

whereDis r.m.s.surface roughnesandd( f ) is skin depthThe normalized offsefree factor
here is

Ik, (X) = /%arctanQ()  wherex = L4 sl | (16)

Derivation of the complex correction factor can be found in Appendix B. The resulted causal
factor becomes:

Kuns(i) =1+ (A1 p)log ﬁ‘ g™ + 2arctan(/s)] (17)

where s =ix is complex frequency, arxlis defined in 16).

lll. Causal versions of Hammerstad and
Cannonball -Huray roughness models

The approach we outlined in previous section can be applied to any other model type, if the loss
correction factor is represented by a continuous analytical function. Some daikllbe&o
different though, such as variable techniques when findikgiktegral.

In this section we present formal results for causal anetaosal versions of Hammerstad and
CannonbalHuray models. To allow sidey-side comparison, we put formulas intable 1
below. For completeness, the table contains definition of smooth metal impedance, and
normalized frequencies used in each case.

As we see, complex characteristics, such as normalized complex correction factor, impedance
and inductance added duemtetal roughness, are functions in complex frequency. There exist
inverse Laplace transforms of these characteristics, thus proving their causality. At the same
time, these models provide loss increase factor (#2 in the Table 1), exactly as defined for the
corresponding model types.



Table 1. Formulas describing causal Hammerstad and Canndhlsaly models

Causal Models Hammerstad CannonbaH
Huray
Impedance of smooth ; — [ -/
X+ X) =+/2XR, =~/2
metalzsmootr(s) ! RS(\/_ \/—) RS SRS
wheres =X
Additional impedance /
due to metal roughnes Ko(s)V2sR,
1 | Normalized frequency 1-4/1/735[)2 W/3$a2
X , ;
Dis r.m.s. surface roughness ais a ball radius
2 | Normalizeal loss 2 X
increase factdk, (X) /_7 arctant) X+/2% +1
3 | Normalized complex 1 1+
: S 1+s S
correction factor —[Iog \/— - log=——+ 2arctan(\/§)] \/—
Ko (s) 1- s 1-s 1+\/§
4 Kor (X) , real part of 1 el 1+4/2X + X \2X ﬂ(*l) x/2
. é-log—————+arctan— —_—
Ko (ix) p &2 I Vax+ x 1- xq X+/2x +1
5| Ky(X),imaginary | 181 1++2x +x J2x 2 JIx12
) —g-log————— +arctan—— - 2arctan{)y —_—
part of K (ix) p &2 1- N2X + X 1-x G X+4/2x +1
6 | Ky (X¥)- Ky(X), 2
w(9-Ks (9, 2 arctang) X
Loss increase factor: g p X++/2X +1
factor at smooth metal
resistancemaking an
additional contribution
into resistive part of
impedance due to
roughness
7| Ko (X)+Kg (%) 1€ 142X +X A 2X 2 X +4/2X
Inductance increase é| 1 \/_x T +2arctar I 2arctani)yy ot J2x 1
factor: a factor at Pe u X+v2x+1
smooth metal
inductance, making an
additional contribution
into inductive part of
impedance due to
roughness
8 | Complex impedance 2
\2s 1++/s 1+s J2s
added due to metal [log \/— - log + 2arctan(\/§)]
roughness, normalizeq 1- \/E 1-s l+\/§
ONR,
9 | Complex inductance \/_ 1+ \/— 1+ \/_
S 2
addel due to metal [log - log + 2arctan@/§)]
roughness, normalizeo \/_ 1 \/_ 1-s 1+\/§
OnR,




. . 2X B
Note D: To avoid discontinuity, here and beIoﬁJ’C’[anl— should be computed as ATANR(2X ,1- X).
- X

Let usnow analyze these results siogside. In the plots below, characteristics of Hammerstad
modelareshown by dashed lineshile CannonbalHuraymodel are showhy solidlines If the
plot provides real and imaginary paof the dependence, theyll be shown by red and blue
color respectively. By [#n], we denats position in Table 1.

In this sectiorwe intentionally consider the functiomsnormalized fregency even though the

exact definition of th@ormalized frequenciyn both casess different The functiongnay also

have differentnultipliers If the difference were only due to scaling/ normalization, it would be
possible to overlap the curves on the logarithmic plots by shifting them along the axes. However,
it is morethanthat, and ve cannot make the curves coincide.

[2) normalized loss increase factor. Solid - Cannonball, dashed - Hammerstad

[3] Complex factor. Red-real, blue-imaginary parts. Solid - C. ball, dashed -
10° = et Sl S e " T g T T

10° [ - =

10° (a) 10 1 10 10 1 1 (b)

Figure 1.(a) Hammerstad and Cannonbglluray loss correction factor [#2b) real/imaginary parts of the complex
correction factor [#4, #5]

The plots in Figuredare loss increase factors for the two models. Botle lsawilar
asymptotesalthough Hammerstad model demonstrates steeper transition from linear grow to
steady region.

Figurelb shows real and imaginary parts of the complex correction factor. It todhester
understand the differense n  t h e mwod. Rdalgpérts thaeelsienilasymptotesat low
and high frequencies, but imagingrgrtsd o nAi low frequencythereal and imaginary parts
grow as-+/x , but a high frequencytheimaginarypart decreases ad//x for Cannonbak
Huray, and ~1/ xfor Hammerstad.

Limitations ofthe Hammerstad moddélecomeobvious when designers start to work at
frequencies that correspond to the declining portion of the dependietueces out thatthe
Hammerstad model gkes too fast.
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035 [3] Trajectory of the factor. Solid - C dashed - [6,7] Factors at resistive and inductive loss (rediblue). Solid - Cannonball, dashed - Hammerstad
5 . ; . . X . . . . . . et e . A - - .

o . ==z=c-=aa —

03 7 Tl
0.25

0.2 ’ o ——

10° 10° 10°

(a) ! : (b)

Figure 2. Trajectory plots representing complex factors [#3] over frequency range (a). Factors in resistive and
inductive components of additional impedance, [#6] and [#7], (b)

Trajectories in Figure&illustratethe behavior of the compx correction factors over frequency.
Note considerable asymmefigr the Hammerstadorrectionfactor. It approaches saturation
level much faster than CannonbHlliray. The non-causal versions of both modeifsplotted,
would showa straight line segméralong real axis, from O to 1.

Figure2b shows multipliers (at skin impedance) creating additional resistive and inductive
components due to roughness. Loss (resistive component) is defined by red curves [#6], same as
original real correction factors [##) Figure 1. Blue curves [#7] show the factors that apply to
inductance. At low frequency they grow as/x and considerably exceed resistive, which grow

as~ X. A non-causal model would make both facterpial[#2] (red) thuscausingconsiderable
underestimation of internal inductance

__[8) Complex lance added due to Real-red, Imag-blue, . lid, Hamm-dash X Complex inductance added due to roughness. Causal-red, Cannb!
8 T - o g

10° 10

(a) : T

Figure 3. (a) Complex impedance contributed by metal roughness: resistive portion (red) and inductive (blue), [#8].
(b) An additional complex inductance, per [#9] in Table 1. For caemer, imaginary part of inductance is shown
with opposite sign (as positive)

Figure3aillustrates complex impedance added due to metal roughness. Resistiveiportion
shown inred, inductiveshown inblue. In both case$einductive component considéis
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exceeds resistivé&Non-causal version suggests that both are equal and coincide wiiotad.
models provide similaasymptotest low and high frequency. At low frequentlye inductive

part of impedance grows a, while theresstive part growsas~ x¥2. At high frequency they
both grow as JX. However, Cannonbaluraydependences are smoother (solid lines).

Figure3b shows complex inductance added due to metal roughhessahat we used iK-K

relations. Real part of inductance is shown by wddle imaginary part of inductance with

opposite sigms shown inblue. Note thathe negative imaginary part of inductanedter

multiplication on complex frequency, becomes positive loss resistéfien using nortausal

model, both real inductance and loss would coincide with blue curve making inductance to

vanish at low frequency.o some extent, a dramatic deficiency of inductan¢eemon-causal

model remained unnoticedue to the fact thahducanced o e s n 6t p mpedamceat | ar ge
low frequency. Still, asve will show, this difference is noticeable and practically important.

So far, wehaveonly considere@dditionalimpedance caused by metal roughness. This

impedance corresponds4g(ix) in equation (3). But how significant is this contribution when
impedance of the smooth metal is factored in?

LetusanalyzeZ,,,(ix), which is an internal impedance of rough metal that includes both

components. Here, howevere need to know one more parameter. When studdadgionto
impedance due to roughness, we assumed that the loskféxtdn (4) is normalized, i.e.

lem k(¥)=1.  Now, | ez, §(&)=¢l6 AKg(x)g, J,(ix)with factors varied s
A=1248.

The results are shown in Figure 4-(d). It is interesting that inductive and resistive
component®f the impedance Figure 4 (a), (care not equal, andio notexactlybehave as

~,/ f . They do so only aterylow and very high frequencie®ut in the middle they have an
inflection that happens at different frequencies for resistive and inductive components.

Also, as we can see Figure 4 (b) and (deven in the combined impedance, the ratio between
inductive and resistive component is considerable and reaches fe&tor 2

12



ratio between i ive and resistive
T T T

10°

Figured. Skin impedance modified by roughnédeft plots. Ratio of inductive component to resisfivieght plots.
First row corresponds to Hammerstadcond to CannonbaiHuray

V. Causal roughness models and characteristics
of transmission lines

If we want to know how model causalityr noncausality affectsthe characteristics of
transmission lines, we need to consider more variables and parameters. In thisvgedtiitin,
assume that pewunit-length (PUL) parameters of the singlenductor transmission lisare
known, and will evaluate the effect of usiagausal model on a number of important
characteristicsnamelyinsertion lossphase delagnd characteristic impedancéhi§ way,we
will get general estimates of the error in a formal way.

We start from the | inebds pr op,agpuningtbaine oper at or
resistive loss producessmaller contribution thatheinductive portion of impedance. Siraily,
assume that dielectric loss produeesnaller conductance than that of the capacitance.

Thereforeg the losses can be separated in the propagation operator as follows:

r

; e ), 9w
G(iw) = &' VTLTICHo) = o LG+, DAL e '”*m”*zm*zmc]_ (19)
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In (18) we assume that metahd dielectric losses() andg(w) respectively, are purely real

because the corresponding imaginary parts are absorbed by fregiependent PUL
inductance and capacitaniogy) andC(w) . For brevity,we will omit frequency arguments in

these variables

Thus,imaginary and real components in the power can be separated as follows:

1w, 9w, L4 r(W) \Fg(w)g

G(iw) ° 2inL 2iuC’ = g iuVLCq (19

Magnitude of the propagation openaiio (19) can be converted inimsertion Loss:

_ 3 L& 20
Iog(lO)gF(W) \Fg(W)ﬁ (20

If there is dosscorrection factoinr(w), it should be visible on the insertion loss plot as a
multiplier to the skin resistancés implied by #6 and #n Table 1, the resistive par{n) has a
multiplierl+ K, (w) - K, (1), whereas the corresponding contribution into an inductance gets
the multiplier equal+ K, (1) + K, (W) . From here, we can represent frequency dependent
inductance as. (W) =L, + (RS/\/VV)(1+ Ko (W) + K, (W), wherel, is a value of inductance at

Ai nfinityo.

A non-causal roughness model applésdentical factor to both resistive and inductive
contributions from skin impedance. That is, the resistive logsgare similar to causal case, but
inductive component(n) =L, + (Fg/\/ﬁ/)(1+ Ko (W) - K, (W) is smalletbecaus&,, (W) >0.

For convenience, we denote the common part of inductance that predssits ¢aseas

LW =1L, + (RS/\/W/)(1+ K, (W) . Then, inductance for causal and feausal cases

becomesL (1) +(R./VwW)K, (W) andL (W) - (R /WK, (W) respectively.

Magnitude of the propagation operator, is it affected hgn-causality?

Whencompuing insertion lossn (20), resistive losgw) is the sameegardless of model

causality What changes is inductan¢ebecomes larger when usiagausal model. Larger
inductance will reduce the effect of resistive losses and increase conductive losses. However,
resistive losses doinate at low frequencyndconductive at high frequencyhatd s  thdé y
model with causal roughness will show slightly less lossvafrequencybut larger ahigh
frequency. The variation of insertion loss can be estimated as:

10 | RK &
DIL =1L, IL G r / cmn : 21
caus noncaus |Og(10) Lcmn\/_ (VV) g(VV) ( )

14




The difference is very small because of the multiplier in changes its sign and remains close to
zero.

Insertion loss magnitude in dB. Causal is red, non-causal blue
T T T T T T T T

o <1073 IL difference (Caus-Noncaus) [dB] (red), estimate (black)
o v T

(a) <10 107 10° 10° 10" 10"

Figure5. (a) IL plots for causal and nesausal models (red/blue), (b) the difference between IL dependenciés: red
found directly from the extided Sparameters, dashed blu@stimated.

In Figure5 a, b, we compare insertion loss frorrp8rameters generated with causal and non
causal roughness models. Figbeeshows that IL plots are practically identical. The difference
is indeed very smalbs see in Figurebb, andthe signchangest approximately 3GHz. Formula
(21) gives very accurate estimate, shown by dashed line.

Propagation phase and phase delay

The first term in 19) describes the phase of the propagation function, whicfuis=- v LC.
We can evaluate this value for causal and-cemnsal models at mid and high frequency

. Rs . _ ° R
assuming that——< d4) a =-wm, L C 1 K, °
( g L(Vl/) /W ) S caustnoncaugl/’/) cmn Lcmn /_W Oi

a Q
-m,/LcmnC?°ﬁ/K0i§. For causal model, we shoul d

here, thaifference in phase becomes, (W) - / roncau) = -1 /LLRS\/_WKOi , and the phase
delay:

—_ C KOi
Tph_caus(M/) - Tph_noncaugl/’/) - l\,gRs ﬁ/ (22)
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a k



0 Addition to phase delay from different effects: 412 Diffarence between phase delays (caus-noncaus) [sec] (solid); its formula estimate (dashed)
7 T T T T

Figure6. (a) Contribution into phase delay from different types of losses; (b) the differephase delague to
roughness causalitgimulated(solid) and predicted by 22 (dashed)

Figure6a shows contributiofrom different lossesto the phase delay. A lo$sss transmission

line has constant phase and group delayafassy line an additional delay decreases with
frequency and approachié® value defined by capacitance and inductance at infinity. For a
given test case, the largest addition comes from impedance of the smooth metal (green), which

dominates at low frequency. It decreases approximat&l/y\/a—a, asrelative ontribution of
inductance due to skin effect.

Next by importance comes additional delay caused by extra capacitance associated with
dielectric loss (blue). This dependence practically refbateal part of DjordjevieSarkar
equation for relative permtivity of dielectric.

Contribution into phase delay frotihe causal roughness model (red) remains almost constant
within wide range. At low frequency, we have/ wincrease of the factdt,, (W) + K, ().
Multiplied by an impedancef the smooth metal, also growiagthis rate, it makes a linearly
growing contribution that practically stays in constant proportion wtithhus increasing an

equivalent inductancend phase dela@nly at higher frequency, whebduecurves in Figure 2b
become flatthis factor settleandits rdative contribution diminishes.

For noncausal modeldlack), the multiplier at inductive impedanig, (W) - K, (W) is by orders

smaller, and practically not visible. At higher frequertbg, red curve in Figurgb approaches
blue, because imaginary part of the complex correction factor starts to go down and the lack of it
becomes lesgisible. This is where contributions from causal and-eansal models converge.

Figure6b illustrates e differencen phase delagaused by using causal madeslidis
simulatedwhile dasheds predicted by formula @. The difference slowly decreadast
remains considerable up to 50GHz. This is consistent with red/black curves in@&gure

Characteistic impedance of the line
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. . R, _ imk+r(w) _
At sufficiently high frequency{—=< 4), we haveZ, = | ——————- =

cmn

\/gw&m,ﬁ &Km 8+r(w)§/[iwC+g(w)].We choose f+d@oformoncacsalus al an
e ¢ - u

Jw

model By assuming that losses are small and expanding the expresdemsquare root, we
find the difference:

i o R Ko
Zc(W) ch(W) m\/ﬁ (23)

More accurate estimate is possibl ethaf we dond
denominator, as follows:

o WIRK, ___ iWnRK,
ZC(VV)_ ch(’/’/) —ZC(VV) - ; ; .
Zpy (i) \/YPUL (M) Zpy (i)
In this expressiorthedenominatodepends on PUL conductance and impedancermogly
imaginary and grows linearly with frequency. Therefore, the surplus in characteristic impedance
is mostly real, and decreasedaéw .

(24)

Figure7 shows the difference in charactegstnpedance caused by model causality. Red and
blue curves are real/imaginary parts of this difference found from two simulations. Green
illustrates real part of the difference found by the simplified equation (23). Dashed black and
cyan show real/imagingiparts of more accurate evaluation of this difference per equation (24).
The latter perfectly matches numerical evaluation.

At low frequencythe nominator in (2) grows linearlythe same ashedenominator, thus
making the difference approximately caarst At higher frequenc¥, peals, then starts
decreasingthus making this difference smallén our particular case the differenice

characteristic impedance between causal anecaasal models about 1% compared to ~50
Ohm charateristic impedanceButd e pendi ng on ,ltcomdbé lergepa snamllere t er s
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Di in i parts of Zc: istic (green dots) and more accurate estimate (black&cyan dash)
T

Sy

107 10° 10° 10" 10"

Figure7. The differencen characteristic impedance of the lidee to causality of the roughness model

V. Restoring causal correction factor from the
loss factor given by a table

Sometimes material vendors describe loss correction factor by tabulated depéafgeize

given as (frequency, value) pairs. This dependence corresponds to #2 or #6 ity fiabte it is
a difference between real and imaginpayts of the unknown complex multipli€(i ) .

SinceK(iys houl d be a causal dependence, itoés temp

M
rational components, for examplekggin) = A, +§ % then equate the tabtgven
e L+ il w,

m

dependence&, . (1) - 1to the difference between real and imaginary parts of this representation

andthentry to find the unknown coefficientslowever, this approadails in most cases
because the task becomes ambiguous. Although we carer@stissing real (imaginary) part
from a given imaginary (realpart, there is no single solutiomhenrestoring the two if we only
know the difference between them.

As shown in Figur&a, thereal and imaginary parts of the fitted approximatioK j¢ w) remain

uncontrollable outsidthe data range, even though the loss factor is fitted accurdigiyré ®).
Notethatboth multipliers in Figur@b decrease above ~10GHzhi ch doesndt mat ch
expectations.
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given loss factor (black) and restored a(w) and b(w) => dashed red/blue given loss factor (black) and its fit (real/imag => dashed red/blue)
o Cer e . T T T T T

0.05

-0.05 L -
107 10° 10° (3) 10" 10" 10" 10"

108 109 () 10" 10" 10" 1013

Figure8. (a) Given lossdctor (black), real and imaginary parts of the fit (red/blue) whose difference approximates
the loss factor; (bfitted loss (red) and inductandielue) correction factors

The proper way is to work with complex impedance, for which we can find real part. F
example, anormalizedsurplus of PUL impedance can be represented as

Zooiw) = Zo (W) R = VW[ Koy (W) - Koy (W)] +i[Ko, (W) + Ky (W]}
assuming the complex factigy(in) = K,, (W) +iK,; (W), K,, (0) = K, (0) =0. Therefore real
part of the surplus impedance should interpolate v&te&s,(i w,) ° \/WH[KO,(WH) - Ko (W)=
\/Wn [K,) - 1. SinceZ(in) is causal, it can be approximated e.g. by a rational fraction
expansion of the form:

i) = 50 A 2 A s - (WA,
2o =A A T = A T A iy TR T (i) @)

To simplify the task, we can chooseet ofM (typicallyl 5 é 3 0) rwe distribued | e s
linearly or logarithmically within the range of interest, and reduce the problem to finding the

M
coefficients only.Note that sinc&,,(0) =0, we should require thdt =- § A, therefore ()

m=1

becomes

_ X AWIw)? N (wlng)A,
2o =8 7 7 A Ty

(26)
Obviously, we can find factor, by equating real part of € to/u; [K,,.(1;) - 1] for a given
set of frequency samplesd solving the linear system eby. singular value decomposition
method For better accuracy, we can also normalize both parts of equation.okfter solving

equation ford , unknown term/ﬁ{[ Ko (W) + K (W)] can be restored as imaginary part &)(2
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Now, that we have approximation fieral and imaginary parts(n) = K, (W) - K, (w) and
T.(W) =K, (W) + Ky, (1), we can findK,, (#) andK; (w) as

Ko ) = ST, + T, Ko (W) = SIT.(0) - T, (). @7

M

: _ M AmMwlw? _

Here, the function =-q->——™andl,(W) =-
B00=78 1y i) T TR gy

thechoserset of polesy, and found coefficientd, . Thecomplexcorrection factoof interest

becomes combination of real/imaginary parts frogv).

M
o Mare fully defined by

given correction factor (black) and restored a(w) and b(w) dashed red/blue given correction factor (solid) and its fit (reallimag => dashed red/blue)

107 10° 10° (b) 10" 10" 10"

Figure9. Given loss factor (black), real and imaginary parts oféséored complex correction fact@ed/blue)(a).
Loss(red) and indu@nce correction factoblue), restored by fi{b)

Unlike Figure8, here we observe more stable behavior ottieection factorsvhile ensuring
sufficiently accurate fit of the loss factor.

VI. Cannonball -Huray Model

Building upon the work already done by Huf&Yy, the Cannonball model is used to determine
the radius ath base area parameters in the original Huray model. As opposed to the stacked
sphere approximation using scanning electron microscopy (SEM) data, the Cannonball model
determines the exact sphere radius and flat base area based solely on roughnesssparameter
published in manufacturersé data sheets.

Using the principle of stacking cannonballs, 14 uniform spheres, with rajliasg stacked in a
pyramidal structure, on a flat tile base, with an @uga as illustrated irrigure 10
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Figure10. Cannonbdlmodelshowing 9 spheres on the base row; 4 spheres in the middle row; and a single sphere

on top. Five pyramid lattice structures join all 14 sphere centers as shown.

If we could peer inside the stack of spheres, and imagine 5 pyramids in a stackedtiattiture

connecting the centers of all 14 spheres the radius can be easily determined by simple geometry

and algebra.

Given the total height of the cannonball stack is equlkias then from method described in
[11], determining the radius of a single sphejeffom 10point mean roughnesR4 parameter
from data sheetian be further simplified and approximated by

ro 0.06R, (CH-1)
And therefore the area of the flat tile bdgg is
A, =36r2. (CH-2)

Since the CannonbaHuray model assumes 14 edualized spheres stacked in a cannonball
stack, and the nodule treatment is applied to a perfectly flat sutti@ceriginal Huray model is
simplified and thus t power loss correction factd€cen(f), can be determined h¥1]:

° ~3 2
Koo (1)01 8432 §a 4D (AD) (CH-3)
(?Aﬂat 9(? r 2r

wherer is sphere radius in meterg;(f) is skin depth, as a function of frequency, in meté¥s:
is an aea of a single square flat tile base in sq. meters

Case Study
To test the accuracy of the model, measured ffata a CMP28 Channel Modeling Platform,

courtesyof [9], 10] was used for model validation. The extracteeethbedded $arameter data
was computed from 2 inch and 8 inch sinrgleded stripline traces.
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Theprinted circuit board (PCB)as fabricated with Isold6] FR408HR 3313 dielectric and 1
0z. MLS Grade 3, cortlled elongation reverse treated foil (RTF), from @aiksui[17]. The
data sheet andCBdesign parameteese summarized ifiable 2

Dielectric constantDk dissipation factorDs, andR; are the values agported in the respective

manufactur esbd

d at a -etcihteatrmest.is ushally apptied tbe¢he coppermi cr o

surfaces prior to final PCB lamination. The etch treatment creates a surface full e/awtso
which follows the underlying rough prédiand allows the resin to squish in and fill the voids
providing a good anchor. Because some of the copper is typically removed during thetaoficro
treatment, the published roughness parameter of the matte side was reduced by nanmnal 50
( 1. 27 ranew thidkness of 4.4d6, used for matte side correction factor analysis.

Table2 CMP-28 Test Board and Data Sheet Parameters

Parameter

Value

Dy Core/Prepred@ f,

3.68/3.62@1GHz

D: Core/Prepre@ fo

0.0087/0.0089 @ 1GHz

R, Drum side 3.048em
R, Before MicroetchMatte side 5.715em
RAfter 50 ¢i n-etthlreaimérnt € m]

Matte side 4.445em

Trace Thicknesg,

1.25 mils (31.7Zm)

Trace Etch Factor

60 deg taper

Trace Width, w

11 mils (279.2@&m)

Core thickness, H1

12 mils (304.6Gm)

Prepreg thickness, H2

10.6 mils (269.0@m)

De-embedded trace length

6.00 in (15.24 cm)

In [12], the authors observed an increase in phase delay proportional to roughness profile and
dielectric material titknessIn [13] it was shown that the increased phase delay caarbly
attributedto increased capacitance due to surface roughness. Because lanppéiess data

shees typically reportDk as the value masured in a production environmahtoes not

guarantee the values are correct for design applicatiomsost cases the value published is

lower that what is finally measured after the PCB has been fabricated.

If the roughness of copper foiland dielé r i ¢

constant

from manufactu

known, then the increase in effective dielectric consfarg) can be approximated hy3]:
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t.
D I} diel D) _
keff (tdiel _ 2Rz) k (CH 4)

wheretgiel is the dieletric material thicknes®; is the 16point mean roughnesandDx is the
dielectric constant for as published in respe

FromTable 2and by applyindCH-4), Dkett of core and prepreg due to roughness were
determined as

Dkeff core:M 3Dk core T 304.67m 3568 33—‘55@GHZ
- (Hsmooth' 2RZ) B (3046771'1 -2 :804&11)
D —Hlamoan__ o = 269mm 362 3.244@GHz

ke“f"’e‘“eg:(Hsmooth- 2R) "9 (2697m -2 #.445m)

A modified version of Mentor Hypelynx [14] was used to include causal/rcausal conductor
models and Cannonbdfluray correction factors for matte and drumhesi of the foibased on
(CH-3). Correctedyeti for core and prepredpased on (CH), wereusedwhile Dy for core and

prepreg remained unchanged fréible 2

Keysight ADS[15] was used for simulation analysisd comparison to measured data.
Frequency domain results are preseimeegure 11 The left graph shows measured insertion
loss of a deembedded 6 inch stripline trace vs causal andoamsal models. As can be seen,
there is virtually no difference beeen causal and narausal model simulations.

The right graph oFigure 11shows measured phase delay vs causal andausal models. The

nontcausal model is consistent with phase delay compensation results publigtd But

when the causal version of conductor roughness model was applied we observe that simulated
phase delay matches measured phase delay almost exactly. This is remarkable, considering there
was no additional tuning or curve of fittingparat er s fr om manuf acturer so

Figure 12shows simulated vs measured resuitsie delay transmission (TDT) impulse

response is shown on the left graph while time domain reflected (TDR) impedance is shown on
right graph. As can be seen, thés excellent correlation between causal models and measured
data for both graphs. Also worth noting the causal model has higher characteristic impedance
and is a better fit to measured resutismpared to nowausal model asxpected
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Insertion Loss vs Frequency Phase Delay vs Frequency
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Figure11. Caus#/ noncausal vs measured insertion loss (IL) (left) and phase delay (right).
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Figure12. Causal / norcausal vs measured time domain transmission (TDT) impulse response (left) and time
domain reflected (TDR) response (right).

Conclusion

In this paperye presentec causal version of the roughness correction factor associated with
certain loss model#lthough theHammerstad an@annonbalHuray modes have been
considered in detail, the method described in this \ats#applies to other models, givéry
formulas or tables.

We consideretheimpactcreated by causality of metal roughneaghe characteristics of
transmission linesChe effect it makes on insertion loss, phase delay and characteristic
impedancevas described analytically as functionsRifL parameters. These formula estimates
show perfect agreement with simulated results.

24



We alsodemonstrated that phase delay and characteristic impedance considerably increased,
compared to the case of usimgon-causalreatvalue correction multiplielSimulatedresults
appear in a perfect agreement with measured characteristics of the ezasepseudy

In the endwe note that ausal and nowausal models of metal roughness are not just two
versions of the same model. Causal models could be wrongng ways, but at least they have
a potential to correctly describe the relation between the current density and the electric field on

met al 6s surface, wANoncdusaimsde| an the athes heardds always ct i o n .

wr ong, a mduestiondd leow largelthg errat brings into simulation.
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Appendix A. Derivation of causal correction
factor for Huray  -Cannonball model

Using the expression (13) describing loss correction factor togeitinef6), we find theresistive
part of the additional impedance due to metaghmesde

XX
Zo(X)=—=—=—R.. (A1)
X++4/2X+1
This must be a real part of the complex frequetheygendent impedance, which is assumed
causal . At t hi s puoknawh imagiwaydpdrt of the kampléxampedansetby r e

applying KK integral transformation. Unfortunately, these integrals are defined for the functions

that disappear at infinity, bu() grows asymptotically aéx . One way to remove thiobstacle
is to consider an equivalent complex inductance, defined by (11). When we divide complex
impedance on complex frequency, a real part of the first is converted into imaginary part of the
complexinductance:

Jx

Li(¥0)=- —=——R. (A2)

X++/2X +1
Since omplex inductance is a causal function, too, and disappears at infinity, we can apply K
integralof the form

2 °.ylmuU
RelJ(X)- Uu =- ;Vpnny)Ezy)dy (A3)
0

to restore unknown real part of the causal function fkaownimaginary.Substituting(A2) into
this integral, weget

2 2, Y'Y
- /R =Zv.. dy. A4
Q (X)) =L, (N/R pvpp(yz_ Yy + 2y +1) y (Ad)
2° 2t*dt

Witht = ﬁ , (A4) become®, (x) = , whoseintegrandcan be

o e )@ +1v2 +1)
represented as

2t 2 @& 1 +X2t2-tﬁ+1rg:
(- xO)(2+tV2+1) 1+x° &2 +tJ/2+1 - g

By substitutingl =t +1/\/§, integral from the first summand in brackets become
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nﬁ[z a n }/ =\/2arctan(/2 )‘ \/_

+t‘/§+1 1/fu
. L t2 41 .
Second integral yields’ ntidt = &(x- 1) . To calculate it, note thalhe odd part of
dt 1°, du _ o
the integrand gives zer 5 E s—> = 0, and remaining integral may be calculated
ot - X oU - X

using residues:

“tP+1 17 t%+ +1 p(x-1)
= dt== R dt = 24 Res(f (t),iv/x = .
e 2_n[—n 2pi Res(f (t),ivx) = 2/1 &)

Here,integrals atsmall semicircles arourid= ° Jx cancel each other, so we consider the only
remainng pole in the upper hatflane.

Finally, collecting the pieces of the integtabether we geQ, (x) = V2 +1‘J/F;X(ZX' ) , Which can
be simplified into
+
LOr(X)/Rs=Qr(X)=X‘J/r—X—\/2—;/—fl- (A5)
From (A2), (A5), we compose the complex inductance as
Lb/R = Y2HIX X (A6)
X+42x+1  x+~/2x+1°

As a frequency response of a causal functi@6) €hould be a real function of complex
frequencys=ix . To find this form, we use=s/i =-is. Since integral is taken over positive
half axis, we assume that{s} 2 0. Therefore, square roots are related as

Js=4ix = \/_1+|)\/_henceweshould replagx by/x = V2

subsitutions in (A6) the complex terms vanistndafter a few elementary transformations we

arrive to:
Ly(ix)/R, = V2 V2
1+s 1+’
From A7), we can find complex impedance, added due to metal roughness as

Z,(X)/ R, = (X)L, (|X)/RS—\/:EI/):_X) 15‘2 (A8)

Finally, considerig (A8) together with(2) and (7), we find the complegughness correction
factor as

L 1- )vs. With these

(A7)
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Jix s
1+4ix  1+4s’

This resultagrees wittthe one from ).

K, (ix) = (A9)

Appendix B . Derivation of causal correction
factor for Hammerstad model

The main steps are sams in Appendid for the CannonbalHuray model. From (16) and (6),
we get

Z,.(X) = %& arctanf)R.. (B1)
From where imaginary part of the additional complex inductance becomes:
2 1
L, (X) =- ——=arctan . B2
a (X) » Ix OR (B2)

With that, integral in KK relation acquires the form:
g§ °.yarctanay)

2
Q) =Ly (VIR =& 0 V.p. i dy (83)
CP~ o Y - X
whereparametea equas 1. It is convenienthoweverto find the derivative of (B3) by this
parameter first:

HQ, (x.a) _ a20 5 yy/ydy §e2—82 ’ t4dt
Ha '(y - X*)1+a’y?) c¢p+ IA'( fox)@+attty’

This integral mayé taken analytically, but the easier way is to use a contour integral in the
upper haHlplane which results in

bQ, (x,a) _ g%ﬁ 1 Vx 8 (B4)
pa p e al+a®® 1+a’*x*9

Now we need to integrate it by Witha =t?, integralfrom the first summand in (B4) becomes
Q(l)(Xa)=gﬁ\/Z da :4\/§F dt .
ro p'Na1+a®>x® p "h+x*
This integral can be found usitige resulie.g.from H. Dwight, Table of integrals and other
mathematical data, McMillan, 1961

dt 1 t*+V2mtem?® 1 V2mt
arctan

2 = n
) T 42m* 12 - 2mt+m? 2\/_m m’ -t

In our casen’ =1/ xandt? = a , therefore

) _42 . dt _ 2 el 1++2ax+ax J2ax o
Q7 (xa)=—n1N v & In +arctan——.
o2 (LI X)? +t ,0\/— a2 1- <J2ax +ax 1- axy

Integral from thesecond summand in (B4)sgmple
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2 -, da 2
Q¥ (x,a)=- E&'Lazxz =- ix arctan@x) .

Now, substitutingg =1, and collectinghe pieces together, we get:

2 el 1++/2x+ X \2X 1]
X) = In + arctan—— - arctan)y). B5
Qr() p\&g_ 1- \/_X+X 1- x Q()g ( )

With that, the compleaddition toinductancedue to roughness becomes

2 @1 1++2x+X J2x

4]
+arctan—— - arctan);- igiarctanQ(). (B6)

L) R = S ok N y p&

Similar towhat we did inAppendix A,by substituion x = - is andv/x = \/_ (1- i)v/s, we convert

(B6) into real function of complex frequency:

J2 & 1+4s 1+s 2}
L,(s)/R = : - log=—— + 2arctan{/s)y. B7
o(9/R = \/—é e M)H (B7)
Then, find complex impedance
J2sé 2
Z,(s)/ R, =sL,(s)/R, = Sélo L+Vs Iog£+2arctang/§)u (B8)
1- s 1-s a
And, finally, the complex factor
Ko(9) = Zo() Zuf9 = dog " 72 - 092+ 2arctang’5)f (89)
1- \/g 1-s G
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