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Abstract  

In the GB/s regime, accurate modeling of insertion loss and phase delay is a precursor to 

successful high-speed serial link designs. We propose a causal (physically meaningful) form of 

the Hammerstad and Cannonball-Huray metal roughness frequency dependent complex 

correction factor. Compared to the widely used, non-causal form, it considerably increases the 

inductive component of internal metal impedance. Transmission lines simulated with a causal 

version demonstrate increased phase delay, and characteristic impedance. By obtaining the 

dielectric and roughness parameters, solely from manufacturers' data sheets, we validate the 

model through a detailed case study to test the model`s accuracy. 
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Introduction  

Metal loss is an increasingly important factor affecting design quality in all high-speed 

applications. As operational frequencies went up, it became evident that formulas ignoring 

roughness of the metal surface greatly underestimated losses. A number of approaches have been 

proposed over the years [1-3] that introduced additional losses by applying frequency-dependent 

correction to the impedance of the smooth metal. Recent survey in this area can be found in [4].  

As of today, a widely accepted approach to model an impedance of the rough metal is taking a 

complex frequency-dependent impedance of the smooth metal and applying to it a multiplier 

)(wK that monotonically grows from 1 to )(¤K >1. Virtually all publications on this topic and a 

vast majority of commercially available simulators assume that this correcting multiplier is a 

real-value function. In the literature, it is often called ñroughness correction factorò.  

Since the internal impedance of the smooth surface is described by the well-known ñskin effectò 

formula, where real and imaginary parts of the impedance are equal, applying a real multiplier to 

it obviously produces the complex value where the parts (resistive and inductive components of 

impedance) are also equal. For example, [2-4] give us the following relations:

sac RKR www )()( = , www /)()(int acRL = , making )(wacR and )(int wwL  definitely equal. Similar 

equations/statements can be found in many other publications, including major textbooks. 

Is this a physically valid model of metal impedance? Can we apply a frequency-dependent real 

multiplier to a causal dependence, which the smooth impedance formula definitely is, without 

violating causality? There are only few sources known to us that have raised these questions.  

First, this issue was addressed in [5] where the authors mention that inductive and resistive 

portion of the metalôs internal impedance are generally not equal, but should be mutually related 

by Hilbert transform to enforce model causality. Indeed, the roughness correction factor )(wK

was defined and derived as a ratio of the active power dissipated on a rough metal to that 

dissipated on a perfectly smooth metal. From here, it follows that it describes proportionality 

between the resistive portions of the impedance only. As to wording, it would make sense to call

)(wK a ñloss correction factorò because we have no evident reasons to believe that inductive 

component should be increased in the same proportion. Another publication [6] actually applied 

this idea to find a causal version of Hurayôs roughness formula.  

Itôs remarkable that these results, despite laying a perfect ground for building physically 

meaningful causal models of metal roughness, went majorly unnoticed. Hence the commonly 

used practice hasnôt changed since then. Perhaps, this can be explained by the fact that [5] did 

not provide practical examples of causal versions of known models, while [6] might appear too 

academic to the readers, and possibly didnôt contain enough evidence that would convince them 

to immediately start using the causal model. 
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A far-reaching goal of this paper is to give an additional impetus to this development and make 

causal roughness models part of the mainstream paradigm when simulating metal losses. As we 

remember, this happened a few years ago with the introduction of causal dielectric loss modeling 

[7, 8]. Now is the time for the metal.  

In addition, we would like to fill in some knowledge gaps regarding this subject, such as: 

 

¶ General approach to derivation of causal models from given analytical expression (or another 

reasonably complete description) of the metal loss correction factor. 

¶ Basic relationships existing between loss correction factor, inductance correction factor, 

complex correction factor, real and imaginary parts of internal impedance and inductance of 

the rough metal. 

¶ Side-by-side comparison of those dependences between causal and non-causal versions of 

Hammerstad and Cannonball-Huray models. 

¶ Derivation of causal roughness model from loss correction factor specified as tabulated 

dependence. 

We also show that: 

 

¶ As necessitated by causality requirements, inductive portion of the internal metal impedance 

of the rough metal is not equal, but appears much larger than the corresponding resistive 

portion of it.  

¶ We analyze the effect of using a causal model of metal roughness on the characteristics of 

transmission lines. Under other conditions being equal, a causal model makes the lineôs delay 

and characteristic impedance larger than with non-causal models. We provide expressions 

which formally evaluate this difference. 

¶ We compare measured characteristics of stripline to simulations when using causal and non-

causal versions of the Cannonball-Huray roughness model [11].  The Cannonball-Huray 

model is a simple model, based on cubic close-packing of equal spheres, which can be used 

to determine the sphere radius and area parameters for the Huray roughness formula. The 

cannonball stack is an example of a cubic close-packing of equal spheres, thus the name for 

the model. By obtaining published conductor roughness parameters, solely from 

manufacturersô data sheets, the model has shown excellent agreement to measured results up 

to 50 GHz.     

This paper is organized as follows: Section I gives general relationships for the causal roughness 

correction multiplier, and outlines the process of deriving a causal correction factor for a given 

analytical expression for the loss correction coefficient. In Section II we apply this approach to 

Cannonball-Huray and Hammerstad models. Section III analyzes the results for Cannonball-

Huray and Hammerstad models. In Section IV, we evaluate the effect of using causal models 

when analyzing lossy transmission lines. In Section V we outline the process of finding a 

complex causal model when the loss correction factor is given by a table. In Section VI, we 

describe the Cannonball-Huray roughness model in more detail. Then, we validate the model, 
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through a case study, using causal and non-causal versions of Cannonball-Huray formula and 

compare them to the measured results. 

I.  General relationships  

As shown in [2, 3], an internal impedance of the metal with smooth surface is related to the skin 

depth, an effective penetration of electromagnetic field into metal surface: 

0

1
( )f

f
d

p ms
=      (1) 

where f is frequency (Hz), 0m is permeability of free space (H/m) andsis metal conductivity 

(S/m). As follows from this formula, the thickness of the effective conducting layer decreases as

f/1 , thus causing an increase in metal impedance in inverse proportion. From here it follows 

a well-known formula for the complex impedance of the smooth conductor:

www ssmooth RiiZ )1()( += , which we will slightly modify and represent as a function of the 

normalized frequencyx : 

sssmooth RsRxiixZ 2)1()( =+= .    (2) 

Here sRis a ñskin resistanceò, a constant factor that absorbs some material and geometrical 

parameters of the conductor, andixs= is a complex frequency. It is convenient to establish 

proportionality between the normalized frequencyx and the angular frequencywindividually for 

each type of metal roughness model, and we will select it later. An impedance of the rough metal 

surface, under other conditions being equal, is larger and therefore can be expressed as 

 )(ixZrough = )()( 0 ixZixZsmooth +     (3) 

where )(0 ixZ is an additional impedance due to metal roughness. As stated in [5], total and 

additional impedance caused by metal roughness must be a causal function, so that)(Re 0 sZ and 

)(Im 0 sZ  must be mutual Hilbert transforms. In [1] and in many other sources, the loss 

correction factor is defined as a ratio of the power dissipated in a rough metal to that dissipated 

in a perfectly smooth metal. From this definition it follows that loss correction factor)(xk , a real 

function of frequency, is also the ratio of the resistive part of impedance of rough metal to the 

resistive part of impedance of smooth metal: 

)(Re/)(Re)( ixZixZxk smoothrough= = )(Re/)(Re1 0 ixZixZ smooth+ = )(1 0 xk+ .   (4)  

In all practical cases it is assumed that 0)0(0 =k , because metal roughness makes no addition to 

impedance at low frequency. 
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Note that it would be improper to use the relations )()()( ixZxkxZ smoothrough = or

)()()( 00 ixZxkxZ smooth= , because we have no evidence that roughness modifies inductive 

(imaginary) part of impedance in the same proportion as it does for resistive (real) part. Instead, 

we should assume that there exists similar relationship with complex (yet unknown) factor

)(0 ixK : 

)()()( 00 ixZixKixZ smooth= .     (5) 

How can we practically find )(0 ixK ? From (2) and (4), it follows that:  

ssmooth RxxkixZxkixZ )()(Re)()(Re 000 ==     (6) 

and we also know that )(0 ixZ must be a causal function. For causal complex function, imaginary 

part can be restored from known real part (6), by using certain types of Kronig-Kramers (K-K) 

relations. Once the missing imaginary part )(Im 0 ixZ is restored, the unknown complex correction 

factor can be found as: 

)(/)()( 00 ixZixZixK smooth= .      (7) 

With known causal complex correction factor, an additional impedance due to metal roughness 

becomes: 

sRssKsZ 2)()( 00 = .       (8) 

From (8), we can express the factors at real and imaginary parts of the impedance of smooth 

metal as: 

=+=+= sir RxiixKxiZxZsZ )1)(()()()( 0000  

sirsir RxxKxKiRxxKxK )]()([)]()([ 0000 ++- .   (9) 

As we see, real and imaginary parts of skin impedance are increased by different factors. The one 

in the real part describes loss correction factor, the other is an inductance correction factor. 

Also, comparing (4) and (9), we see that 

)()]()([ 000 xkxKxK ir =- .     (10) 

This result matches [6]. An important conclusion from here is that for a given complex 

correction factor that applies to complex impedance of the smooth metal, the loss correction 

factor is a difference between its real and imaginary parts, whereas an inductance correction 

factor is a sum of real and imaginary parts of the same complex factor. As we see, metal 

roughness modifies resistive and inductive parts of the smooth metal in different proportion. 
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Below, we will also need an expression for an additional complex inductance caused by metal 

roughness. It can be found as a ratio of the complex impedance (8) and complex frequency as

sR
s

sKssZsL
2

)(/)()( 000 == . Real and imaginary parts of the complex impedance and 

inductance are related as xxiZxxZxiLxLixL riir /)(/)()()()( 00000 -=+= . Therefore, imaginary 

part of the inductance can be found as 

ssri R
x

xk
xRxxkxxZxL

)(
/))((/)()( 0

000 -=-=-=  .   (11) 

As we see, it is fully defined by the loss correction factor. 

 

II.  Finding causal correction factor for 

Cannonball -Huray an d Hammerstad model s  

Cannonball -Huray  model  

 

We will use the above equations to illustrate the process of deriving complex correction factor 

for a single component of the Cannonball-Huray roughness model. As shown in [3, 11], these 

models define loss correction factor in a form of the sum 

    ä
= ++

+=
N

n

nn

n
sph

a

f

a

f

A
AfK

1

2

20

2

)()(
1

)(
dd

    (12) 

where ŭ(f) is a skin depth defined in (1), na are radii of spherical shapes representing rough metal, 

and factors nA are constant and defined by geometry assumed by each model.  

Letôs consider n-th summand in (12), assuming 1=nA . By introducing a dimensionless 

normalized frequency ( ) 2

0

2

)(/2 nn afax swmd == , we represent this component as a simple 

function of a single argument: 

12/1/21

1
)(0

++
=

++
=

xx

x

xx
xk , 0>x .   (13) 

Then, using definitions and ideas from Section I, we derive a complex factor as shown in 

Appendix A. This factor becomes
ix

ix
ixK

+
=

1
)(0 . Considering all summands in (12), the final 

result becomes: 
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02 nn afx smp= .   (14) 

Hammerstad model  

 

Hammerstad loss correction factor [2] is given by equation: 

)))(/(4.1arctan(
2

1)( 2

1 fAfKhmst d
p

D+=     (15) 

whereDis r.m.s. surface roughness, and )( fd is skin depth. The normalized offset-free factor 

here is  

)arctan(
2

)(0 xxk
p
= , where

2

04.1 D= smpfx .    (16) 

Derivation of the complex correction factor can be found in Appendix B. The resulted causal 

factor becomes: 

)]arctan(2
1

1
log

1

1
)[log/(1)( 1 s

s

s

s

s
AifKhmst +

-

+
-

-

+
+= p    (17) 

where ixs= is complex frequency, andx is defined in (16). 

 

III.  Causal versions of Hammerstad and 

Cannonball -Huray roughness models  

The approach we outlined in previous section can be applied to any other model type, if the loss 

correction factor is represented by a continuous analytical function. Some details could be 

different though, such as variable techniques when finding K-K integral. 

In this section we present formal results for causal and non-causal versions of Hammerstad and 

Cannonball-Huray models. To allow side-by-side comparison, we put formulas into Table 1 

below. For completeness, the table contains definition of smooth metal impedance, and 

normalized frequencies used in each case.  

As we see, complex characteristics, such as normalized complex correction factor, impedance 

and inductance added due to metal roughness, are functions in complex frequency. There exist 

inverse Laplace transforms of these characteristics, thus proving their causality. At the same 

time, these models provide loss increase factor (#2 in the Table 1), exactly as defined for the 

corresponding model types. 
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Table 1. Formulas describing causal Hammerstad and Cannonball-Huray models 

 Causal Models Hammerstad Cannonball-

Huray 

 Impedance of smooth 

metal )(sZsmooth
, 

where ixs=  

sss RsRixxixR 22)( ==+  

 Additional impedance 

due to metal roughness sRssK 2)(0  

1 Normalized frequency 

x  

2

04.1 Dsmpf , 

Dis r.m.s. surface roughness 

2

0 aswm , 

a is a ball radius 

2 Normalized loss 

increase factor )(0 xk  
)arctan(

2
x

p
 

12 ++ xx

x
 

3 Normalized complex 

correction factor 

)(0 sK  
)]arctan(2

1

1
log

1

1
[log

1
s

s

s

s

s
+

-

+
-

-

+

p
 

s

s

+1
 

4 )(0 xK r , real part of 

)(0 ixK  
ù
ú

ø
é
ê

è

-
+

+-

++

x

x

xx

xx

1

2
arctan

21

21
log

2

11

p
(*1) 

12

2/

++

+

xx

xx
 

5 )(0 xK i , imaginary 

part of )(0 ixK  
ù
ú

ø
é
ê

è
-

-
+

+-

++
)arctan(2

1

2
arctan

21

21
log

2

11
x

x

x

xx

xx

p
 

12

2/

++ xx

x
 

6 )()( 00 xKxK ir - , 

Loss increase factor: a 

factor at smooth metal 

resistance, making an 

additional contribution 

into resistive part of 

impedance due to 

roughness 

)arctan(
2

x
p

 
12 ++ xx

x
 

7 )()( 00 xKxK ir + , 

Inductance increase 

factor: a factor at 

smooth metal 

inductance, making an 

additional contribution 

into inductive part of 

impedance due to 

roughness 

ù
ú

ø
é
ê

è
-

-
+

+-

++
)arctan(2

1

2
arctan2

21

21
log

1
x

x

x

xx

xx

p
 

12

2

++

+

xx

xx
 

8 Complex impedance 

added due to metal 

roughness, normalized 

on
sR  

)]arctan(2
1

1
log

1

1
[log

2
s

s

s

s

ss
+

-

+
-

-

+

p
 

s

s

+1

2
 

9 Complex inductance 

added due to metal 

roughness, normalized 

on
sR  

)]arctan(2
1

1
log

1

1
[log

2
s

s

s

s

s

s
+

-

+
-

-

+

p
 

s+1

2
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Note (*1): To avoid discontinuity, here and below, 
x

x

-1

2
arctan should be computed as ATAN2( x2 , x-1 ). 

Let us now analyze these results side-by-side. In the plots below, characteristics of Hammerstad 

model are shown by dashed lines, while Cannonball-Huray model are shown by solid lines. If the 

plot provides real and imaginary parts of the dependence, they will be shown by red and blue 

color respectively. By [#n], we denote its position in Table 1. 

In this section we intentionally consider the functions in normalized frequency, even though the 

exact definition of the normalized frequency in both cases is different. The functions may also 

have different multipliers. If the difference were only due to scaling/ normalization, it would be 

possible to overlap the curves on the logarithmic plots by shifting them along the axes. However, 

it is more than that, and we cannot make the curves coincide. 

 

Figure 1. (a) Hammerstad and Cannonball-Huray loss correction factor [#2]; (b) real/imaginary parts of the complex 

correction factor [#4, #5] 

The plots in Figure 1a are loss increase factors for the two models. Both have similar 

asymptotes; although Hammerstad model demonstrates steeper transition from linear grow to 

steady region.  

Figure 1b shows real and imaginary parts of the complex correction factor. It helps to better 

understand the differences in the modelsô behavior. Real parts have similar asymptotes, at low 

and high frequencies, but imaginary parts donôt. At low frequency the real and imaginary parts 

grow as x~ , but at high frequency, the imaginary part decreases as x1/~ for Cannonball-

Huray, and x/1~ for Hammerstad.  

Limitations of the Hammerstad model become obvious when designers start to work at 

frequencies that correspond to the declining portion of the dependence. It turns out that the 

Hammerstad model settles too fast. 
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Figure 2. Trajectory plots representing complex factors [#3] over frequency range (a). Factors in resistive and 

inductive components of additional impedance, [#6] and [#7], (b) 

Trajectories in Figure 2a illustrate the behavior of the complex correction factors over frequency. 

Note considerable asymmetry for the Hammerstad correction factor. It approaches saturation 

level much faster than Cannonball-Huray. The non-causal versions of both models, if plotted, 

would show a straight line segment along real axis, from 0 to 1. 

Figure 2b shows multipliers (at skin impedance) creating additional resistive and inductive 

components due to roughness. Loss (resistive component) is defined by red curves [#6], same as 

original real correction factors [#2] in Figure 1. Blue curves [#7] show the factors that apply to 

inductance. At low frequency they grow as x~  and considerably exceed resistive, which grow 

as x~ . A non-causal model would make both factors equal [#2] (red) thus causing considerable 

underestimation of internal inductance. 

 

Figure 3. (a) Complex impedance contributed by metal roughness: resistive portion (red) and inductive (blue), [#8]. 

(b) An additional complex inductance, per [#9] in Table 1. For convenience, imaginary part of inductance is shown 

with opposite sign (as positive) 

Figure 3a illustrates complex impedance added due to metal roughness. Resistive portion is 

shown in red, inductive shown in blue. In both cases the inductive component considerably 
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exceeds resistive. Non-causal version suggests that both are equal and coincide with red. Both 

models provide similar asymptotes at low and high frequency. At low frequency, the inductive 

part of impedance grows asx~ , while the resistive part grows as 2/3~ x . At high frequency they 

both grow as x~ . However, Cannonball-Huray dependences are smoother (solid lines).  

Figure 3b shows complex inductance added due to metal roughness. It is what we used in K-K 

relations. Real part of inductance is shown by red, while imaginary part of inductance with 

opposite sign is shown in blue. Note that the negative imaginary part of inductance, after 

multiplication on complex frequency, becomes positive loss resistance. When using non-causal 

model, both real inductance and loss would coincide with blue curve making inductance to 

vanish at low frequency. To some extent, a dramatic deficiency of inductance in the non-causal 

model remained unnoticed, due to the fact that inductance doesnôt produce large impedance at 

low frequency. Still, as we will show, this difference is noticeable and practically important. 

So far, we have only considered additional impedance caused by metal roughness. This 

impedance corresponds to )(0 ixZ in equation (3). But how significant is this contribution when 

impedance of the smooth metal is factored in?  

Let us analyze )(ixZrough , which is an internal impedance of rough metal that includes both 

components. Here, however, we need to know one more parameter. When studying addition to 

impedance due to roughness, we assumed that the loss factor)(0 xk  in (4) is normalized, i.e.

1)(lim 0 =
¤

xk
x

. Now, letôs consider )()](1[)( 0 ixZixAKixZ smoothrough += with factors varied as

8,4,2,1=A . 

The results are shown in Figure 4, (a)-(d). It is interesting that inductive and resistive 

components of the impedance in Figure 4 (a), (c) are not equal, and do not exactly behave as

f~ . They do so only at very low and very high frequencies.  But in the middle they have an 

inflection that happens at different frequencies for resistive and inductive components.  

Also, as we can see in Figure 4 (b) and (d), even in the combined impedance, the ratio between 

inductive and resistive component is considerable and reaches factor 2-3. 

 



13 

 

 

 

Figure 4. Skin impedance modified by roughness ï left plots. Ratio of inductive component to resistive ï right plots. 

First row corresponds to Hammerstad, second ï to Cannonball-Huray 

IV.  Causal roughness models and characteristics 

of transmission lines  

If we want to know how model causality, or non-causality, affects the characteristics of 

transmission lines, we need to consider more variables and parameters. In this section, we will 

assume that per-unit-length (PUL) parameters of the single-conductor transmission lines are 

known, and will evaluate the effect of using a causal model on a number of important 

characteristics, namely insertion loss, phase delay and characteristic impedance. This way, we 

will  get general estimates of the error in a formal way. 

We start from the lineôs propagation operator, and will try to simplify it, assuming that the 

resistive loss produces a smaller contribution than the inductive portion of impedance. Similarly, 

assume that dielectric loss produces a smaller conductance than that of the capacitance.  

Therefore, the losses can be separated in the propagation operator as follows: 
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In (18) we assume that metal and dielectric losses, )(wr  and )(wg respectively, are purely real 

because the corresponding imaginary parts are absorbed by frequency-dependent PUL 

inductance and capacitance )(wL and )(wC . For brevity, we will omit frequency arguments in 

these variables.  

Thus, imaginary and real components in the power can be separated as follows: 

º)(wiG =
++- ]
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Magnitude of the propagation operator in (19) can be converted into Insertion Loss: 

ö
ö
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å
+-= )()(

)10log(

10
ww g

C

L
r

L

C
lIL .    (20)  

If there is a loss correction factor in )(wr , it should be visible on the insertion loss plot as a 

multiplier to the skin resistance. As implied by #6 and #7 in Table 1, the resistive part )(wr  has a 

multiplier )()(1 00 ww ir KK -+ , whereas the corresponding contribution into an inductance gets 

the multiplier equal )()(1 00 ww ir KK ++ . From here, we can represent frequency dependent 

inductance as ))()(1)(/()( 00 wwww irs KKRLL +++= ¤ , where ¤L is a value of inductance at 

ñinfinityò.  

A non-causal roughness model applies an identical factor to both resistive and inductive 

contributions from skin impedance. That is, the resistive losses)(wr are similar to causal case, but 

inductive component ))()(1)(/()( 00 wwww irs KKRLL -++= ¤ is smaller because 0)(0 >wiK . 

For convenience, we denote the common part of inductance that presents in both cases as

=)(wcmnL ))(1)(/( 0 ww rs KRL ++¤ . Then, inductance for causal and non-causal cases 

becomes )()/()( 0 www iscmn KRL + and )()/()( 0 www iscmn KRL -  respectively. 

Magnitude of the propagation operator, is it affected by non-causality? 

When computing insertion loss in (20), resistive loss )(wr is the same regardless of model 

causality. What changes is inductance. It becomes larger when using a causal model. Larger 

inductance will reduce the effect of resistive losses and increase conductive losses. However, 

resistive losses dominate at low frequency, and conductive at high frequency. Thatôs why the 

model with causal roughness will show slightly less loss at low frequency but larger at high 

frequency. The variation of insertion loss can be estimated as: 
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The difference is very small because of the multiplier in changes its sign and remains close to 

zero. 

 

Figure 5. (a) IL plots for causal and non-causal models (red/blue), (b) the difference between IL dependencies: red ï 

found directly from the extracted S-parameters, dashed blue ï estimated. 

In Figure 5 a, b, we compare insertion loss from S-parameters generated with causal and non-

causal roughness models. Figure 5a shows that IL plots are practically identical. The difference 

is indeed very small, as seen in Figure 5b, and the sign changes at approximately 3GHz. Formula 

(21) gives very accurate estimate, shown by dashed line. 

Propagation phase and phase delay 

 

The first term in (19) describes the phase of the propagation function, which is LClwwj -=)( . 

We can evaluate this value for causal and non-causal models at mid and high frequency 

(assuming that 1
)(

<<
wwL

Rs ) as º°-= i
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w . For causal model, we should take ñ+ò in this expression. From 

here, the difference in phase becomes is
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delay: 
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Figure 6. (a) Contribution into phase delay from different types of losses; (b) the difference in phase delay due to 

roughness causality: simulated (solid) and predicted by (22) (dashed) 

 

Figure 6a shows contribution from different losses into the phase delay. A loss-less transmission 

line has constant phase and group delay. For a lossy line an additional delay decreases with 

frequency and approaches the value defined by capacitance and inductance at infinity. For a 

given test case, the largest addition comes from impedance of the smooth metal (green), which 

dominates at low frequency. It decreases approximately asw/1 , as relative contribution of 

inductance due to skin effect.  

 

Next by importance comes additional delay caused by extra capacitance associated with 

dielectric loss (blue). This dependence practically repeats the real part of Djordjevic-Sarkar 

equation for relative permittivity of dielectric.  

 

Contribution into phase delay from the causal roughness model (red) remains almost constant 

within wide range. At low frequency, we havew~ increase of the factor )()( 00 ww ir KK + . 

Multiplied by an impedance of the smooth metal, also growing at this rate, it makes a linearly 

growing contribution that practically stays in constant proportion with¤Lw thus increasing an 

equivalent inductance and phase delay. Only at higher frequency, where blue curves in Figure 2b 

become flat, this factor settles and its relative contribution diminishes. 

 

For non-causal model (black), the multiplier at inductive impedance )()( 00 ww ir KK - is by orders 

smaller, and practically not visible. At higher frequency, the red curve in Figure 2b approaches 

blue, because imaginary part of the complex correction factor starts to go down and the lack of it 

becomes less visible. This is where contributions from causal and non-causal models converge. 

 

Figure 6b illustrates the difference in phase delay caused by using causal model. Solid is 

simulated, while dashed is predicted by formula (22). The difference slowly decreases but 

remains considerable up to 50GHz. This is consistent with red/black curves in Figure 6a. 

 

Characteristic impedance of the line 
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At sufficiently high frequency ( 1<<
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model. By assuming that losses are small and expanding the expression under square root, we 

find the difference: 
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More accurate estimate is possible if we donôt ignore losses but consolidate them in the 

denominator, as follows: 
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In this expression, the denominator depends on PUL conductance and impedance. It is mostly 

imaginary and grows linearly with frequency. Therefore, the surplus in characteristic impedance 

is mostly real, and decreases asw/1 . 

 

Figure 7 shows the difference in characteristic impedance caused by model causality. Red and 

blue curves are real/imaginary parts of this difference found from two simulations. Green 

illustrates real part of the difference found by the simplified equation (23). Dashed black and 

cyan show real/imaginary parts of more accurate evaluation of this difference per equation (24). 

The latter perfectly matches numerical evaluation. 

 

At low frequency the nominator in (24) grows linearly, the same as the denominator, thus 

making the difference approximately constant. At higher frequency, iK0 peaks, then starts 

decreasing; thus making this difference smaller. In our particular case the difference in 

characteristic impedance between causal and non-causal models is about 1% compared to ~50 

Ohm characteristic impedance. But depending on lineôs parameters, it could be larger or smaller. 
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Figure 7. The difference in characteristic impedance of the line due to causality of the roughness model 

V.  Restoring causal correction factor from the 

loss factor given  by a table  

Sometimes material vendors describe loss correction factor by tabulated dependence )( nlossK w

given as (frequency, value) pairs. This dependence corresponds to #2 or #6 in Table 1; hence it is 

a difference between real and imaginary parts of the unknown complex multiplier )(wiK .  

Since )(wiK should be a causal dependence, itôs tempting to represent it by a sum of simple 

rational components, for example as ä
=

¤
+

+=
M

m m

m

i

A
AiK

1

0
/1

)(
ww

w , then equate the table-given 

dependence, 1)( -nlossK w to the difference between real and imaginary parts of this representation 

and then try to find the unknown coefficients. However, this approach fails in most cases 

because the task becomes ambiguous. Although we can restore a missing real (imaginary) part 

from a given imaginary (real) part, there is no single solution when restoring the two if we only 

know the difference between them.  

As shown in Figure 8a, the real and imaginary parts of the fitted approximation to )(0 wiK remain 

uncontrollable outside the data range, even though the loss factor is fitted accurately (Figure 8b). 

Note that both multipliers in Figure 8b decrease above ~10GHz, which doesnôt match our 

expectations.  
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Figure 8. (a) Given loss factor (black), real and imaginary parts of the fit (red/blue) whose difference approximates 

the loss factor; (b) fitted loss (red) and inductance (blue) correction factors 

The proper way is to work with complex impedance, for which we can find real part. For 

example, a normalized surplus of PUL impedance can be represented as 

)]}()([)]()({[/)()( 0000000 wwwwwww irirs KKiKKRiZiZ ++-== ,  

assuming the complex factor )()()( 000 www ir iKKiK += , 0)0()0( 00 == ir KK . Therefore real 

part of the surplus impedance should interpolate values º)(Re 00 niZ w )]()([ 00 ninrn KK www - =

]1)([ -nlossn K ww . Since )(00 wiZ is causal, it can be approximated e.g. by a rational fraction 

expansion of the form: 
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To simplify the task, we can choose a set of M (typically 15é30) real polesmw distributed 

linearly or logarithmically within the range of interest, and reduce the problem to finding the 

coefficients only.  Note that since 0)0(00 =Z , we should require that ä
=

¤ -=
M

m

mAA
1

therefore (25) 

becomes 
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Obviously, we can find factorsmA by equating real part of (26) to ]1)([ -nlossn K ww for a given 

set of frequency samples and solving the linear system e.g. by singular value decomposition 

method. For better accuracy, we can also normalize both parts of equation onw. After solving 

equation for mA , unknown term )]()({[ 00 www ir KK + can be restored as imaginary part of (26).  
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Now, that we have approximation for real and imaginary parts )()()( 00 www irr KKT -= and

)()()( 00 www iri KKT += , we can find )(0 wrK and )(0 wiK as 
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the chosen set of poles mw and found coefficientsmA . The complex correction factor of interest 

becomes a combination of real/imaginary parts from (27). 

 

Figure 9. Given loss factor (black), real and imaginary parts of the restored complex correction factor (red/blue) (a). 

Loss (red) and inductance correction factors (blue), restored by fit (b) 

Unlike Figure 8, here we observe more stable behavior of the correction factors while ensuring 

sufficiently accurate fit of the loss factor. 

VI. Cannonball -Huray Model  

Building upon the work already done by Huray [3], the Cannonball model is used to determine 

the radius and base area parameters in the original Huray model. As opposed to the stacked 

sphere approximation using scanning electron microscopy (SEM) data, the Cannonball model 

determines the exact sphere radius and flat base area based solely on roughness parameters 

published in manufacturersô data sheets.  

Using the principle of stacking cannonballs, 14 uniform spheres, with radius (r), are stacked in a 

pyramidal structure, on a flat tile base, with an area Aflat, as illustrated in Figure 10  
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Figure 10. Cannonball model showing 9 spheres on the base row; 4 spheres in the middle row; and a single sphere 

on top. Five pyramid lattice structures join all 14 sphere centers as shown. 

If we could peer inside the stack of spheres, and imagine 5 pyramids in a stacked lattice structure 

connecting the centers of all 14 spheres the radius can be easily determined by simple geometry 

and algebra.  

Given the total height of the cannonball stack is equal to HRMS, then from method described in 

[11], determining the radius of a single sphere (r), from 10-point mean roughness (Rz) parameter 

from data sheet, can be further simplified and approximated by 

0.06 zr Rº       (CH-1) 

And therefore the area of the flat tile base Aflat is 

236flatA r= .      (CH-2) 

Since the Cannonball-Huray model assumes 14 equally sized spheres stacked in a cannonball 

stack, and the nodule treatment is applied to a perfectly flat surface, the original Huray model is 

simplified and thus the power loss correction factor, KCBH(f), can be determined by [11]: 

  ()
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    (CH-3) 

where r is sphere radius in meters; ŭ (f) is skin depth, as a function of frequency, in meters, Aflat 

is an area of a single square flat tile base in sq. meters. 

Case Study  

To test the accuracy of the model, measured data, from a CMP-28 Channel Modeling Platform, 

courtesy of [9], 10] was used for model validation. The extracted de-embedded S-parameter data 

was computed from 2 inch and 8 inch single-ended stripline traces.  
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The printed circuit board (PCB) was fabricated with Isola [16]  FR408HR 3313 dielectric and 1 

oz. MLS Grade 3, controlled elongation reverse treated foil (RTF), from Oak-mitsui [17]. The 

data sheet and PCB design parameters are summarized in Table 2.  

Dielectric constant, Dk dissipation factor, Df, and Rz are the values as reported in the respective 

manufacturesô data sheets. An oxide or micro-etch treatment is usually applied to the copper 

surfaces prior to final PCB lamination. The etch treatment creates a surface full of micro-voids 

which follows the underlying rough profile and allows the resin to squish in and fill the voids 

providing a good anchor. Because some of the copper is typically removed during the micro-etch 

treatment, the published roughness parameter of the matte side was reduced by nominal 50 ɛin 

(1.27 ɛm) for a new thickness of 4.445ɛm, used for matte side correction factor analysis. 

Table 2 CMP-28 Test Board and Data Sheet Parameters 

Parameter Value 

Dk Core/Prepreg @  fo 3.68/3.62@1GHz 

Df Core/Prepreg @  fo 0.0087/0.0089 @ 1GHz 

Rz Drum side 3.048 ɛm 

Rz Before Micro-etch-Matte side 5.715 ɛm 

Rz After 50 ɛin (1.27 ɛm) Micro-etch treatment -

Matte side   4.445 ɛm 

Trace Thickness, t 1.25 mils (31.73 ɛm) 

Trace Etch Factor  60 deg taper 

Trace Width, w 11 mils (279.20 ɛm) 

Core thickness, H1 12 mils (304.60 ɛm) 

Prepreg thickness, H2 10.6 mils (269.00 ɛm) 

De-embedded trace length 6.00 in (15.24 cm) 

 

In [12], the authors observed an increase in phase delay proportional to roughness profile and 

dielectric material thickness. In [13] it was shown that the increased phase delay can be partly 

attributed to increased capacitance due to surface roughness. Because laminate suppliersô data 

sheets typically report Dk as the value measured in a production environment, it does not 

guarantee the values are correct for design applications. In most cases the value published is 

lower that what is finally measured after the PCB has been fabricated. 

If the roughness of copper foil and dielectric constant from manufacturersô data sheets are 

known, then the increase in effective dielectric constant (Dkeff) can be approximated by [13]: 
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where tdiel is the dielectric material thickness, Rz is the 10-point mean roughness, and Dk is the 

dielectric constant for as published in respective manufacturersô data sheets. 

From Table 2 and by applying (CH-4), Dkeff  of core and prepreg due to roughness were 

determined as 
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A modified version of Mentor HyperLynx [14] was used to include causal/non-causal conductor 

models and Cannonball-Huray correction factors for matte and drum sides of the foil based on 

(CH-3). Corrected Dkeff for core and prepreg, based on (CH-4), were used while Df for core and 

prepreg remained unchanged from Table 2. 

Keysight ADS [15] was used for simulation analysis and comparison to measured data. 

Frequency domain results are presented in Figure 11. The left graph shows measured insertion 

loss of a de-embedded 6 inch stripline trace vs causal and non-causal models. As can be seen, 

there is virtually no difference between causal and non-causal model simulations. 

The right graph of Figure 11 shows measured phase delay vs causal and non-causal models. The 

non-causal model is consistent with phase delay compensation results published in [13]. But 

when the causal version of conductor roughness model was applied we observe that simulated 

phase delay matches measured phase delay almost exactly. This is remarkable, considering there 

was no additional tuning or curve of fitting parameters from manufacturersô data sheet values. 

Figure 12 shows simulated vs measured results. Time delay transmission (TDT) impulse 

response is shown on the left graph while time domain reflected (TDR) impedance is shown on 

right graph. As can be seen, there is excellent correlation between causal models and measured 

data for both graphs. Also worth noting the causal model has higher characteristic impedance 

and is a better fit to measured results compared to non-causal model as expected.  
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Figure 11. Causal / non-causal vs measured insertion loss (IL) (left) and phase delay (right). 

 

 

Figure 12. Causal / non-causal vs measured time domain transmission (TDT) impulse response (left) and time 

domain reflected (TDR) response (right). 

Conclusion  

In this paper, we presented a causal version of the roughness correction factor associated with 

certain loss models. Although the Hammerstad and Cannonball-Huray models have been 

considered in detail, the method described in this work also applies to other models, given by 

formulas or tables. 

We considered the impact created by causality of metal roughness on the characteristics of 

transmission lines. The effect it makes on insertion loss, phase delay and characteristic 

impedance was described analytically as functions of PUL parameters. These formula estimates 

show perfect agreement with simulated results.  
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We also demonstrated that phase delay and characteristic impedance considerably increased, 

compared to the case of using a non-causal, real-value correction multiplier. Simulated results 

appear in a perfect agreement with measured characteristics of the example case study. 

In the end, we note that causal and non-causal models of metal roughness are not just two 

versions of the same model. Causal models could be wrong in many ways, but at least they have 

a potential to correctly describe the relation between the current density and the electric field on 

metalôs surface, which is a causal function. A non-causal model, on the other hand, is always 

wrong, and itôs only a question of how large the error it brings into simulation. 
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Appendix A. Derivation of causal correction 

factor for Huray -Cannonball model  

Using the expression (13) describing loss correction factor together with (6), we find the resistive 

part of the additional impedance due to metal roughness be 

sr R
xx

xx
xZ

12
)(0

++
= .     (A1) 

This must be a real part of the complex frequency-dependent impedance, which is assumed 

causal. At this point, weôd like to restore unknown imaginary part of the complex impedance by 

applying K-K integral transformation. Unfortunately, these integrals are defined for the functions 

that disappear at infinity, but (A1) grows asymptotically asx . One way to remove this obstacle 

is to consider an equivalent complex inductance, defined by (11). When we divide complex 

impedance on complex frequency, a real part of the first is converted into imaginary part of the 

complex inductance: 
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Since complex inductance is a causal function, too, and disappears at infinity, we can apply K-K 

integral of the form 
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to restore unknown real part of the causal function from known imaginary. Substituting (A2) into 

this integral, we get 
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By substituting 2/1+=tu , integral from the first summand in brackets becomes 

http://www.isola-group.com/
http://www.oakmitsui.com/pages/company/company.asp
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Here, integrals at small semicircles around xt °= cancel each other, so we consider the only 

remaining pole in the upper half-plane. 

Finally, collecting the pieces of the integral together, we get
21
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be simplified into 
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From (A2), (A5), we compose the complex inductance as 
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As a frequency response of a causal function, (A6) should be a real function of complex 

frequency ixs= . To find this form, we use isisx -== / . Since integral is taken over positive 

half axis, we assume that 0}Im{ ²s . Therefore, square roots are related as 

xiixs )1(
2

1
+== hence we should replacex by six )1(

2
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-= . With these 

substitutions in (A6) the complex terms vanish and after a few elementary transformations we 

arrive to: 
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From (A7), we can find complex impedance, added due to metal roughness as 
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Finally, considering (A8) together with (2) and (7), we find the complex roughness correction 

factor as 
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This result agrees with the one from [6]. 

 

Appendix B . Derivation of causal correction 

factor for Hammerstad model  

The main steps are same as in Appendix A for the Cannonball-Huray model. From (16) and (6), 

we get 
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From where imaginary part of the additional complex inductance becomes: 
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With that, integral in K-K relation acquires the form: 
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where parameteraequals 1. It is convenient however to find the derivative of (B3) by this 

parameter first: 
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This integral may be taken analytically, but the easier way is to use a contour integral in the 

upper half-plane, which results in 
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Now we need to integrate it by Ŭ. With
2t=a , integral from the first summand in (B4) becomes 
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This integral can be found using the result e.g. from H. Dwight, Table of integrals and other 

mathematical data, McMillan, 1961: 
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In our case xm /12 = and a=2t , therefore 
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Integral from the second summand in (B4) is simple:  
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Now, substituting 1=a , and collecting the pieces together, we get: 

 ù
ú

ø
é
ê

è
-

-
+

+-

++
= )arctan(

1

2
arctan

21

21
ln

2

12
)( x

x

x

xx

xx

x
xQr
p

.  (B5) 

With that, the complex addition to inductance due to roughness becomes 
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Similar to what we did in Appendix A, by substitution isx -= and six )1(
2

1
-= , we convert 

(B6) into real function of complex frequency: 
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Then, find complex impedance 
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And, finally, the complex factor 
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