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Abstract—This letter presents a novel broadband and 

completely parametric model of differential via holes by virtue of 
the space-mapping neural network technique. This model consists 
of a neural network and an equivalent circuit that is utilized to 
account for various EM effects of differential via holes. The neural 
network is trained to learn the multi-dimensional mapping 
between the geometrical variables and the values of independent 
circuit elements in the equivalent circuit. Once trained with the 
EM data, this model provides accurate and fast prediction of the 
EM behavior of differential via holes with geometry parameters as 
variables. Experiments in comparison with measurement data and 
EM simulations are included to demonstrate the merits of this new 
model in both the frequency and time domains. 

Index Terms—Differential via holes, parametric modeling, 
neural networks, space mapping. 

I. INTRODUCTION 

ITH the continuous increase of clock frequency and 
layout density of high-speed circuits, differential via 

holes on multilayered printed circuit board have an important 
effect on signal quality issues such as bit error rate, crosstalk, 
reflections, or ground bounce. The design optimization of 
differential via holes often requires repetitive adjustments of the 
geometrical parameters. However, lack of fast, accurate, and 
parametric models becomes one of the design bottlenecks. 
Various modeling approaches have been reported [1]-[3]. 
Popular EM-field numerical simulations have been used for 
accurately solving the modeling problems. But the EM 
numerical approaches are time-consuming when the values of 
geometrical parameters vary repetitively. A characterization 
method was developed to model differential via holes as a 
cascade of capacitances and inductances [1]. This method 
required a special extraction process to calculate the values of 
capacitances and inductances at each designated location on via 
holes. A further time-domain macro-π model demonstrated a 
promising improvement in broadband accuracy [2]. The circuit 
elements in this macro-π model were expressed in terms of 
port-parameters instead of the actual geometrical variables. A 
partly parametric model based on the equivalent circuit 
extraction technique was developed to improve the accuracy 
over a broad bandwidth [3]. However, this advanced model has 
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a complicated circuit topology with a large number of circuit 
elements, which leads to difficulty in parameter extraction and 
fitting. All these existing models are geometrically fixed. When 
the geometrical parameters of differential via holes are changed, 
the model needs to be re-developed. 

This letter presents a novel broadband and completely 
parametric model of differential via holes on the multilayered 
printed circuit board by virtue of the space-mapping neural 
network (SMNN) technique. This new model exploits the merits 
of space-mapping technology [4]. It consists of an equivalent 
circuit and a neural network. The equivalent circuit is utilized to 
account for various EM effects of differential via holes. The 
widely used 3-layer neural network is trained to learn the 
multi-dimensional mapping between the geometrical variables 
and the values of independent circuit elements in the equivalent 
circuit. Once trained with the EM data, the proposed SMNN 
model preserves almost the same accuracy as EM simulations, 
yet works with the same computational speed as equivalent 
circuits. This parametric model is SPICE-compatible and can be 
readily used for geometry optimization of differential via holes 
in both the frequency and time domains. 

II.  SPACE-MAPPING NEURAL NETWORK MODEL 

A. Equivalent Circuit for Differential Via Holes 

The physical layout of differential via holes on multilayered 
printed circuit board is shown in Fig. 1. It is a four-port passive 
component, which is representative of a 26 layer design with 10 
stripline layers used for differential pair routing. All reference 
layers are connected by two ground vias per differential pair 
vias. Each pair of via holes is connected through a coupled 
stripline with fixed line width of 0.203 mm, space of 0.229 mm, 
and length of 152.4 mm. The space between each intra-pair via 
is 1.499 mm and the adjacent ground via is 2.007 mm away for 
each respective signal via. The layout is embedded into a 
dielectric material N4000-13TM. The total dielectric spacing 
between the reference planes is nominally 0.551 mm. The 
thicknesses of core and prepreg materials are 0.254 mm and 
0.279 mm, respectively. The metallic layers are copper with 
thicknesses of 0.5 ounce and conductivity values of 5.8×107 
Siemens/m. Considering the EM simulation time and memory 
requirement of this complicated and large structure, the entire 
geometrical structure was segmented into four parts: two 
Segment 1 (for the two couples of differential via holes) and two 
Segment 2 (for the coupled striplines) each with line length of 
76.2 mm as shown in Fig.1 (b). S-parameters of each segment 
were obtained separately through HFSS EM simulations [5] and 
then these S-parameters are combined to produce the overall 
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EM responses.  
Fig. 2 shows the equivalent circuit for differential via holes 

on the multilayered printed circuit board. In this equivalent 
circuit, the differential via hole was modeled as two separated 
lossy coupled transmission line models (i.e., CLINP 1 and 2) in 
ADS [6] where one part is the via portion of the signal path from 
outer layer to a particular inner signal layer. The other part is the 
stub portion. All these via segments and stubs used the same 
values of effective dielectric constant (Dk) and odd mode 
impedance (Zo) for respective layer topology model. An 
edge-coupled stripline (SCLIN) model in ADS was used to 
represent the 6 inches coupled stripline. Cm models the mutual 
capacitance between the two pads on the top layer. C1 represents 
the capacitive coupling between the pad and the reference 
ground plane. C2 models the capacitance between the via holes 
and the reference ground planes. Open-circuited stubs are used 
to model the open-circuited effect of via stubs. 

DpDh

Wa

La

2.007

1.499 mm

152.4 mm

mm

 
(a) 

x

z

y

Segment 1 Segment 2

Top Layer

Layer 20

Layer 10

Layer 2

 Dielectric Material 
N4000-13TM

Lh

Ls

 
(b) 

Fig.1. (a) Top view of the layout of differential via holes on multilayered 
printed circuit board, (b) Entire structure is segmented into two Segment 1 (for 
the two couples of differential via holes) and two Segment 2 (for the coupled 
striplines) each with line length of 76.2 mm (half of total length). 
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Fig. 2. Equivalent circuit for differential via holes. 

B. Structure of the Proposed SMNN Model 

The structure of proposed SMNN model is illustrated in Fig. 

3. It consists of a neural network and an equivalent circuit. Let x 
represent the inputs of the neural network defined as six 
geometrical variables of differential via holes, i.e. diameter of 
via holes (Dh), diameter of pads (Dp), width of anti-pads (Wa), 
length of anti-pads (La), length of via holes (Lh) and length of 
stubs  (Ls) as illustrated in Fig. 1. Let Ce represent the outputs of 
the neural network specified as five independent circuit 
elements in the equivalent circuit, i.e., effective dielectric 
constant (Dk), odd mode impedance (Zo) of CLINP models, Cm, 
C1 and C2 as illustrated in Fig. 2. The neural network is trained 
to learn the multi-dimensional mapping between x and Ce. Let d 
represent the outputs of EM simulations, i.e., magnitudes and 
radians of differential S-parameters SDD11 and SDD21. Let y 
represent the outputs of the equivalent circuit. The objective 
here is to adjust the neural network internal weights such that the 
mean square error between the available training data d and y is 
minimized     
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where w denotes the internal weights of the neural network, n is 
the total number of training geometry samples, Fp is the number 
of frequency points, and P represents the mapping between xk 
and Ce through the neural network 
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This process is accomplished using the quasi-Newton algorithm 
in NeuroModeler [7]. Once trained with the EM data, the 
SMNN model for differential via holes is established.  
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Fig.3. Structure of the proposed SMNN model for differential via holes. 

III.  EXPERIMENTS AND RESULTS 

The SMNN technique is applied to the broadband and 
parametric modeling of the differential via holes on the 
multilayered printed circuit board. There are 360 sets of training 
data as defined in Table I. Partial composite design of 
experiments method [8] is used to determine the distribution of 
training data samples. The lengths of via holes (Lh) and stubs 
(Ls) are determined by the position of signal layer within the 
board stack-up. Three different via stubs representing long, 
medium and short stubs for layers 2, 10 and 20, respectively, are 
performed in our study. Because most reinforced laminates with 
layers of woven glass had dielectric anisotropy of 15-20% [9], 
our investigations show that the transverse dielectric constant 
Dk(z) of 3.58 and 3.69 (from ParcNelco dielectric calculator for 
the respective cores and prepregs materials) and a longitudinal 
dielectric constant Dk(x/y) of average value 4.3 in HFSS EM 
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simulations produce the best match with the quarter wave 
frequency notch of measurement data. The frequency range of 
interest is from DC to 20 GHz with step size of 0.1 GHz. 

Fig. 4 depicts the frequency-domain differential responses of 
SDD21 and the time-domain differential responses of TDD11 
by the proposed SMNN model for three different geometries #1, 
#2, and #3, which are never used during the training, in 
comparison with EM simulations and measurement data. The 
geometrical parameters of three differential via holes are as 
follows: Dh =0.711 mm, Dp= 1.092 mm, Wa = 1.346 mm, La= 
1.854 mm for layer 2 (#1), layer 10 (#2), layer 20 (#3) as shown 
in Fig. 1. The time-domain differential responses are derived 
using a time- domain reflector function from the S-parameter 
data within ADS. The S-parameter measurements were 
performed on these three differential via holes using Agilent 
NS230A, 4 port 20GHz Vector Network Analyzer. The 3-layer 
neural network with 20 neurons in the hidden layer was 
constructed in our model. Broadband accuracy of the proposed 
model is confirmed by its good agreement with the EM 
simulations and measurement data in both the frequency and 
time domains. A relatively lower accuracy at high frequency is 
because that this model did not include the parasitic probe 
fixture effects which are part of the device under measurement, 
nor did it consider a higher value for dissipation factor for the 
dielectric which is often the case. Our proposed SMNN model 
correctly predicts the quarter wave resonant frequency at 4.3 
GHz and 6.3 GHz which match the measurement data for two 
different geometries #1 and #2, respectively. 

The advantage of using the proposed SMNN model is also 
realized in terms of CPU time compared to EM simulations. The 
evaluation of three different geometries #1, #2, and #3 takes 
only 2.75s by the proposed SMNN model in sharply contrast to 
10.2 hours by the HFSS EM simulations. 

TABLE I.  DEFINITION OF TRAINING DATA  

Parameters 
Training data (360 sets) 

Min Max Step 

Dh (mm) 0.508 0.762 0.0508 

Dp (mm) 0.889 1.143 0.0508 

Wa (mm) 1.143 1.905 0.127 
La (mm) 1.321 2.032 0.1016 

Layer 2:   Lh = 0.356 mm  Ls =6.858 mm; 
Layer 10: Lh =2.692 mm   Ls =4.521 mm; 
Layer 20: Lh =5.588 mm   Ls =1.626 mm. 

IV.  CONCLUSION 

A broadband and completely parametric model of differential 
via holes on multilayered printed circuit board using the SMNN 
technique has been introduced. Instead of applying the stiff and 
time-consuming parameter fitting by human, this model utilizes 
the neural network to learn the mapping between the 
geometrical variables and the values of independent circuit 
elements in the equivalent circuit through an automated training 
process. Once trained, the proposed SMNN model provides 
accurate and fast prediction of the EM behavior of differential 
via holes and can be used in high-level simulation and 
optimization with geometrical parameters as design variables. 
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Fig.4. Comparison of frequency-domain responses of SDD21 and time-domain 
responses of TDD11 by the proposed SMNN model, EM simulations and 
measurement data for three different geometries #1(a), #2(b), and #3(c). 


