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With just -3.5dB delta 
@12.5 GHz => ½ the eye 
height with rough copper 
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Failure To Model Roughness Can Ruin You Day 

Rough Copper Smooth Copper 

Simulated with Keysight ADS 

25Gb/s 



 

Current distribution at DC 
is uniform through cross-
sectional area of 
conductor 
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DC Current Distribution Through a Rectangular Conductor 
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DC resistance is 
proportional resistivity 
and inversely proportional 
to the cross sectional area 

 

6 

DC Resistance 
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ρ = Bulk resistivity of the material in Ω-m 

X-sectional  
Area 



 

 

 

Above ~10MHz current 
flows mainly along “skin” 
of the conductor 
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Skin Effect 



δ 

 

Skin depth (δ) is effective 
thickness where AC 
current flows 
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Skin Depth 



9 

Skin Depth vs Frequency 

 μ0 = Permeability of free space in H/m  
  σ = Conductivity in S/m. 
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δ 

Skin depth inversely  proportional to 𝑓 



10 

AC Resistance 
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Effective 
X-sectional  
Area 

Reduced cross-sectional area causes AC resistance to increase proportional to 𝑓  



High frequency currents 
concentrated mostly 
along surface facing 
reference plane due to 
proximity effect 
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Current Distribution Microstrip 

Reference Plane 
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Current Distribution Stripline 

Reference Plane 

Symmetrical 

Reference Plane 
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Asymmetrical 
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Return current on respective reference plane ≈ +/-3H 
from signal conductor center 
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Return Current Distribution 
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RAC_microstrip = RAC_trace + RAC_ref 

14 

AC Resistance Microstrip 
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1. Determine RAC_microstrip1 

2. Determine RAC_microstrip2 

3. Combine both in parallel 

 

4. Determine Insertion Loss: 
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Stripline Conductor Loss  
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Conductor Loss Model Validation 

4 in 

Excellent correlation!  
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VS 

Keysight ADS Momentum 



No such thing as a perfectly smooth 
PCB conductor surface 

 

Roughness is always applied to 
promote adhesion to the dielectric 
material 
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Conductor Roughness 



18 

Copper Foil Manufacturing Processes 

VS 

Rolled Electro-deposited (ED) 

Lower Cost Smoother 



 Copper bar fed through a 
series of progressively smaller 
rollers to achieve final 
thickness 

 Roller smoothness 
determines final smoothness 
of foil 
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Rolled Copper Foil Fabrication Process 

Copper Foil 

Reducing Rollers 

Copper Bar 



 Drum speed controls foil 
thickness 

 Matte side always rougher 
than drum side 
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Electrodeposited Copper Foil Fabrication Process 

Cathode 

Drum Side 

Matte Side 

Anode 

Drum 

Untreated Foil 

Cu Sulfate 
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Common Roughness Profiles 

IPC Standard Profile IPC Very Low Profile(VLP) Ultra Low Profile (ULP)Class 

SEM Photos Courtesy [6] 

No min/max spec < 5.2 μm max  -Other names: HVLP, VSP 
-No IPC spec 
-Typically < 2 μm max 
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Electro-deposited Copper Foil Nodulation Treatment 

Drum Side Untreated 

Matte Side Untreated 

Drum Side Treated 

Matte Side Treated 

Untreated 
Foil 

Nodulation 
Treatment 

Treated 
Foil 

Drum Side 

Matte Side Matte Side 

Drum Side 

SEM Photos Courtesy [2] 



 

Profilometers are often 
used to measure surface 
roughness 
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Measuring Surface Roughness 

Stylus Tip 

Surface 
Profile 

Stylus 
Sample 

Motor Drive and  
Processing Unit 

Measured  
Profile 

Stylus Pickup Unit 



 3D Scan Profile 

 Faster 

 More reliable 

 More accurate 
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Optical Profilometer 

Sample 

Measured  
Profile 

Optics 

CCD  

Processing Unit 



 Average roughness (Ra) 
typically specified for drum 
side on data sheet 

 Ra  = Arithmetic average of 
the absolute values of 
deviations Yi 
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Average Roughness Parameter 
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 Ten-point mean roughness (Rz) 
typically specified for matte 
side on data sheet 

 Rz= Sum of the average of the 
five highest peaks and the five 
lowest valleys over the sample 
length 
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Ten-point Mean Roughness Parameter 
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Modeling Copper Roughness 



 Assumes 2D corrugated 
surface 

 Based on mathematical fit 
to S.P. Morgan Power Loss 
Data (1948) 

 Lose accuracy above 5GHz 
for rough copper 
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Hamerstad & Jenson Model 
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 RMS tooth height in meters 



 SF = scaling factor representing 
the ratio of the length of the 
rough surface (Lrough )to the 
spatial length (Lspatial) –Ref [2]  

 

 Impractical from first principles 
perspective – Lrough not 
published in data sheets 
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Modified Hamerstad & Jenson Model 
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𝐴𝑚𝑎𝑡𝑡𝑒

𝐴𝑓𝑙𝑎𝑡
  = relative area of the matte base compared to a flat surface 

ai = radius of the copper sphere (snowball) of the ith size, in meters 

 
𝑁𝑖

𝐴𝑓𝑙𝑎𝑡
 = number of copper spheres of the ith size per unit flat area in 

sq. meters 

δ (f) = skin-depth, as a function of frequency, in meters 
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Huray “snowball” Model 
 

SEM Photo Courtesy [3]  
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Huray Model Prior Art 

11 spheres min; 38 spheres max 
of radius 1μm to fit within hex 
tile area and height of 5.8μm 

Fit equation parameters to 
measured data 

Assumes stacked 
“snowballs” arranged in 
hexagonal lattice 

SEM Photo Courtesy [3]  Plot Courtesy [2]  

VNA Measurement 

Model 



Benefits: 

Practical 

Accurate 

Issues: 

Expertise Required 

Time 

Money 
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Design Feedback Method* 

*Reference [2] 

Design Product Channel Simulation 
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Hexagonal Close-packing of Equal Spheres (HCPES) Model 

33 



34 

Why Bother? 

 Helps make informed decision sooner - “Sometimes an OK answer NOW! is more 
important than a good answer late” – Eric Bogatin    
 

 Fast simulation time - Practical for what-if spreadsheet analysis 
 

 Minimal expertise required 
 

 Useful to sanitize CAD tools 
 

 Useful to gain intuition on what to expect with measurements and help determine 
root cause of differences  
 



 Similar to Huray Model 

 Based on close-packing of 11 
equal sized spheres 

 Does not require SEM analysis to 
determine stack height (HRMS ) or 
hexagonal tile area 
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HCPES Model 

Reference [5] 

Hexagonal  
Tile Area 



 Assumes nodule treatment applied 

to perfect flat surface 
 

 Sphere radius and hex tile area 

determined solely on published 

roughness parameters from 

manufacturer’s data sheet  

 36 

HCPES Correction Factor  
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HCPES lattice structure 
loosely resembles the 
actual SEM photo 
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HCPES Model Lattice Structure 

SEM Photo Courtesy [3]  



 

Lattice structure scales 
inversely to the square of 
the height 
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HCPES Model Scalability 

H 
H/2 



 Total of 11 equal sized spheres 

 HRMS = height of 2 tetrahedrons 
plus 2 sphere radii 

 Hexagonal tile perimeter 
surrounds 7 base spheres exactly 
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HCPES Model Anatomy 

Hexagonal Tile 



Determine Height of Single Tetrahedron 
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1. Determine DE 

Given: 
 Each side of the tetrahedron = 2r 
   
 
Using Pythagorean theorem:  
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2. Determine Height (AE) 

Therefore: 
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Since HRMS = height of 2 tetrahedrons + sphere dia. 

 

 

 

Therefore sphere radius is: 
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Determine HCPES Sphere Radius 
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AHex = 6 x area of equilateral 
triangle ADG 
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Determine Hexagonal Tile Area 
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Method to Determine Rough Conductor Loss 
 



Typically:  

 Must consider roughness of each 
side when determining AC 
resistance 

 Matte sides bonded to core 

 Drum sides bonded to prepreg 

 Drum sides roughened with oxide 
or etch treatment prior to 
lamination 
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Stripline Geometry with Surface Roughness Example 
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Dual Triangular Sawtooth Profile (DTSP) Model 

Used to approximate RMS height of matte and drum side 
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1. Determine RMS Tooth Height of Matte and Drum Sides 
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2. Determine HCPES Matte & Drum Correction Factors  
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3. Determine AC Resistances of Each Surface 
 

Reference [1] 
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4. Determine Stripline Rough Conductor Loss 
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Case Study 
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Test Platform 

Case 1  
Megtron-6 

HVLP Cu  

Case 2  
N4000-13EP 

VLP Cu  

Photos courtesy [2] 

12 Layer test 
boards 
designed, built 
and tested by 
Molex Inc., 
courtesy of 
David Dunham 

Generalized Modal 
S-parameters (GMS) 
data courtesy Scott 
McMorrow, 
Teraspeed 
Consulting Group 

Generalized Modal 
S-parameters (GMS) 
data courtesy Yuriy 
Shlepnev, Simberian 
Software Corp 



Parameter Case 1 Megtron-6 Case 2 N4000-13EP 

Dk 3.62 @50GHz 3.6-3.7 @10GHz[i] 

Df 0.006 @ 50GHz 0.008-0.009 @ 10GHz[ii] 

Rz HVLP 1.50 μm - 

Rz VLP - 2.50 μm 

Ra w/Micro-etch [iii] 1.44 μm 1.44 μm 

Trace Thickness, t 15.23 μm 15.23 μm 

Trace Widths w1, w2 251 μm, 236 μm 251 μm, 236 μm 

Dielectric Heights, H1,H2 249 μm, 231 μm 249 μm, 231 μm 

GMS trace length 10.15 cm (4.00 in) 10.15 cm (4.00 in) 

Zo(fo) ohms [iv] 52.29 @ 50GHz 52.07  @ 10GHz 

[i]  Dk = 3.65 used 
[ii] Df = 0.0085 used 
[iii] CO-BRA BOND® SM is an example of a hydrogen peroxide/sulfuric acid micro-etch treatment often used by PCB 

fabricators to improve the adhesion of copper surface to dielectric materials. 
[iv] Zo(fo) = Characteristic impedance determined by 2D field solver at frequency fo  

54 

Board Parameters From Data Sheets and Design 
 

 

Stripline Geometry Reference  



Determining Total Insertion Loss 
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     _  Total diel cond roughIL f IL f IL f 

Keysight ADS 

• Svensson/Djordjevic wideband Debye model 
used to ensure causality for dielectric loss 
 

• Conductivity parameter set to a value much-
much greater than the normal conductivity 
of copper ensures the conductor is lossless 
for the simulation 
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Simulation Correlation Results 
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Excellent correlation!  

VLP HVLP 



Model Comparisons  

57 
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Correction Factor Comparisons (Ra = 1.44μm; Rz =2.5 μm) 
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KHJM SF = 1.65 KHJM SF = 1.65 
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Summary and Conclusions 

1. Using the concept of hexagonal close-packing of equal spheres, a 
novel method to accurately calculate sphere size and hexagonal 
tile area was devised for use in the Huray model. 

2. By using published roughness parameters and dielectric properties 
from manufacturers’ data sheets,  we show the need for further 
SEM analysis or experimental curve fitting, may no longer be 
required for preliminary design and analysis. 

3. HCPES model looks promising as a practical alternative to previous 
modeling methods. 
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Ongoing Research 

Test the HCPES model to see how well this method 
applies to other material and copper roughness 
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